A non-local problem with integral conditions of the first kind for the string vibration equation

Cover Page

Cite item

Full Text

Abstract

The article considers a problem with integral nonlocal conditions of the first kind. The main goal is to prove the unique solvability of a nonlocal problem with integral conditions of the 1st kind, if the kernels of these conditions depend not only on the spatial variable, but also on time. The equivalence of a nonlocal problem with integral conditions of the 1st kind and a nonlocal problem with integral conditions of the 2nd kind is shown. Restrictions on the input data are obtained to ensure the uniqueness of a generalized solution to the problem posed.

Full Text

1 Постановка задачи

Рассмотрим в области Q=(0,l)×(0,T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaai2 dacaaIOaGaaGimaiaaiYcacaWGSbGaaGykaiabgEna0kaaiIcacaaI WaGaaGilaiaadsfacaaIPaaaaa@432F@ , где l,T<, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaaiY cacaWGubGaaGipaiabg6HiLkaaiYcaaaa@3D74@  уравнение

                                                         u tt (a(x,t) u x ) x =f(x,t)(1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWG0bGaamiDaaqabaGccqGHsislcaaIOaGaamyyaiaaiIca caWG4bGaaGilaiaadshacaaIPaGaamyDamaaBaaaleaacaWG4baabe aakiaaiMcadaWgaaWcbaGaamiEaaqabaGccaaI9aGaamOzaiaaiIca caWG4bGaaGilaiaadshacaaIPaGaaGikaiaaigdacaaIPaaaaa@4DB5@

и поставим следующую задачу: найти в области Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@38DD@  решение уравнения (1), удовлетворяющее начальным данным

                                                       u(x,0)=ϕ(x), u t (x,0)=ψ(x)(2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaaicdacaaIPaGaaGypaiabew9aMjaaiIcacaWG 4bGaaGykaiaaiYcacaWG1bWaaSbaaSqaaiaadshaaeqaaOGaaGikai aadIhacaaISaGaaGimaiaaiMcacaaI9aGaeqiYdKNaaGikaiaadIha caaIPaGaaGikaiaaikdacaaIPaaaaa@4F8D@

и нелокальным условиям

                                              0 l K 1 (x,t)u(x,t)dx= h 1 (t), 0 l K 2 (x,t)u(x,t)dx= h 2 (t).(3) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam4samaaBaaaleaacaaI XaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhacaaI9aGaamiA amaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaaiYcada WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGlbWaaSba aSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca WG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiaa i2dacaWGObWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPa GaaGOlaiaaiIcacaaIZaGaaGykaaaa@66E3@

Будем считать, что a(x,t)>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGOpaiaaicdaaaa@3E80@  в Q ¯ T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca WGrbaaamaaBaaaleaacaWGubaabeaaaaa@39F3@ .

Особенность поставленной задачи заключается не только в том, что условия (3) являются нелокальными интегральными условиями первого рода, но и в том, что их ядра K i (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGPbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@3E0C@  зависят и от переменной t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@ .

Напомним, что нелокальными условиями принято называть соотношения, связывающие значения искомого в области Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3995@  решения на некотором внутреннем многообразии и в точках границы области Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3995@ .

В случае одной пространственной переменной нелокальные интегральные условия могут быть представлены следующим соотношением:

                                                 αu(x,t)+β u x (x,t)+λ 0 l K(x,t)u(x,t)dx=0.(*) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaam yDaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaey4kaSIaeqOSdiMa amyDamaaBaaaleaacaWG4baabeaakiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaey4kaSIaeq4UdW2aa8qmaeqaleaacaaIWaaabaGaamiB aaqdcqGHRiI8aOGaam4saiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIha caaI9aGaaGimaiaai6cacaaIOaGaaGOkaiaaiMcaaaa@5E0B@

Если α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@39A6@  и β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@39A8@  не обращаются в ноль одновременно, то условие называется интегральным условием второго рода.

Если α=β=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiabek7aIjaai2dacaaIWaGaaGilaaaa@3E45@  то условие называется интегральным условием первого рода. [3]

К настоящему времени имеется значительное количество статей, посвященых исследованию нелокальных задач с интегральными условиями [5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 8; 11]. Разработаны методы исследования разрешимости нелокальной задачи с интегральными условиями второго рода [2; 5; 10]. Если в () β0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgE HiQiaaiMcacaaIGaGaeqOSdiMaeyiyIKRaaGimaaaa@3F27@ , то эффективным оказался метод, впервые реализованный в [4] для многомерного уравнения. Если же в () α=β=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgE HiQiaaiMcacaaIGaGaeqySdeMaaGypaiabek7aIjaai2dacaaIWaaa aa@408D@ , то есть нелокальные условия первого рода, при обосновании рассуждения возникает много трудностей, отмеченных и в статьях [2; 6; 9]. Одним из способов преодолеть возникающие трудности является сведение условий первого рода к условиям второго рода, причем так, чтобы они оказались эквивалентными. Условия на входные данные, обеспечивающие возможность этой процедуры, отражены в следующей лемме.

Лемма. Пусть

                                          null

и выполняются условия согласования

                                                  0lKi(x,0)ϕ(x)dx=hi(0),0l[Ki(x,0)ψ(x)+Kit(x,0)ϕ(x)]dx=h'i(0).(4)

Тогда нелокальные условия первого рода (3) эквивалентны нелокальным условиям второго рода

                                   ux(0,t)=α11u(0,t)+α12u(l,t)+0lP1(x,t)u(x,t)dx+20lP2(x,t)ut(x,t)dx+G1(t),ux(l,t)=α21u(0,t)+α22u(l,t)+0lP3(x,t)u(x,t)dx+20lP4(x,t)ut(x,t)dx+G2(t),(5)

где α ij , P i (x,t), G i (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadMgacaWGQbaabeaakiaaiYcacaWGqbWaaSbaaSqaaiaa dMgaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISaGaam 4ramaaBaaaleaacaWGPbaabeaakiaaiIcacaWG4bGaaGilaiaadsha caaIPaaaaa@4930@  выражаются через K i (x,t),a(x,t),f(x,t), h i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGPbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGilaiaadggacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcaca WGMbGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISaGaamiAamaa BaaaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGykaaaa@4E90@  и их производные.

Доказательство. Пусть u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3D12@  удовлетворяет уравнению (1) и условиям (2), (3). Дифференцируя равенство (3) дважды по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@ , получим

                                         0 l ( K 1 (x,t) u tt (x,t)+2 K 1t (x,t) u t (x,t)+ K 1tt (x,t)u(x,t))dx=h " 1 (t), 0 l ( K 2 (x,t) u tt (x,t)+2 K 2t (x,t) u t (x,t)+ K 2tt (x,t)u(x,t))dx=h " 2 (t). (6) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiIca caWGlbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWG1bWaaSbaaSqaaiaadshacaWG0baabeaakiaaiIca caWG4bGaaGilaiaadshacaaIPaGaey4kaSIaaGOmaiaadUeadaWgaa WcbaGaaGymaiaadshaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaa iMcacaWG1bWaaSbaaSqaaiaadshaaeqaaOGaaGikaiaadIhacaaISa GaamiDaiaaiMcacqGHRaWkcaWGlbWaaSbaaSqaaiaaigdacaWG0bGa amiDaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiMcacaWGKbGaamiEaiaa i2dacaWGObGaaGOiamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0b GaaGykaiaaiYcaaeaadaWdXaqabSqaaiaaicdaaeaacaWGSbaaniab gUIiYdGccaaIOaGaam4samaaBaaaleaacaaIYaaabeaakiaaiIcaca WG4bGaaGilaiaadshacaaIPaGaamyDamaaBaaaleaacaWG0bGaamiD aaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRiaaik dacaWGlbWaaSbaaSqaaiaaikdacaWG0baabeaakiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaamyDamaaBaaaleaacaWG0baabeaakiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaey4kaSIaam4samaaBaaaleaa caaIYaGaamiDaiaadshaaeqaaOGaaGikaiaadIhacaaISaGaamiDai aaiMcacaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIPaGa amizaiaadIhacaaI9aGaamiAaiaaikcadaWgaaWcbaGaaGOmaaqaba GccaaIOaGaamiDaiaaiMcacaaIUaaaaiaaiIcacaaI2aGaaGykaaaa @A80F@

Теперь выразим из уравнения (1) u tt (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWG0bGaamiDaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaaaa@3F3A@  и подставим в (6), получим

                                     0l(K1(x,t)(f+(a(x,t)ux)x)+2K1t(x,t)ut(x,t)+K1tt(x,t)u(x,t))dx=h"1(t),0l(K2(x,t)(f+(a(x,t)ux)x)+2K2t(x,t)ut(x,t)+K2tt(x,t)u(x,t))dx=h"2(t).(7)

Проинтегрируем теперь слагаемые, содержащие u xx MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWG4bGaamiEaaqabaaaaa@3B27@  дважды, и получим

                               0lK1(x,t)(a(x,t)ux)xdx=K1(l,t)a(l,t)ux(l,t)K1(0,t)a(0,t)ux(0,t)++K1x(0,t)a(0,t)u(0,t)K1x(l,t)a(l,t)u(l,t)+0l(K1x(x,t)a(x,t))xu(x,t)dx,0lK2(x,t)(a(x,t)ux)xdx=K2(l,t)a(l,t)ux(l,t)K2(0,t)a(0,t)ux(0,t)++K2x(0,t)a(o,t)u(0,t)K2x(l,t)a(l,t)u(l,t)+0l(K2x(x,t)a(x,t))xu(x,t)dx.(8)      

Подставим (8) в (7)

                                0 l K 1 (x,t)fdx+ K 1 (l,t)a(l,t) u x (l,t) K 1 (0,t)a(0,t) u x (0,t)+ K 1x (0,t)a(0,t)u(0,t) K 1x (l,t)a(l,t)u(l,t)+ 0 l ( K 1x (x,t)a(x,t)) x u(x,t)dx+2 0 l K 1t (x,t) u t (x,t)dx+ + 0 l K 1tt (x,t)u(x,t)dx=h " 1 (t), 0 l K 2 (x,t)fdx+ K 2 (l,t)a(l,t) u x (l,t) K 2 (0,t)a(0,t) u x (0,t)+ K 2x (0,t)a(0,t)u(0,t) K 2x (l,t)a(l,t)u(l,t)+ 0 l K 2x (x,t)a(x,t )) x u(x,t)dx+2 0 l K 2t (x,t) u t (x,t)dx+ + 0 l K 2tt (x,t)u(x,t)dx=h " 2 (t). (9) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabyqaaa aabaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam4s amaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaamOzaiaadsgacaWG4bGaey4kaSIaam4samaaBaaaleaacaaI XaaabeaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaamyyaiaaiI cacaWGSbGaaGilaiaadshacaaIPaGaamyDamaaBaaaleaacaWG4baa beaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaeyOeI0Iaam4sam aaBaaaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGilaiaadshacaaI PaGaamyyaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamyDamaaBa aaleaacaWG4baabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGa ey4kaSIaam4samaaBaaaleaacaaIXaGaamiEaaqabaGccaaIOaGaaG imaiaaiYcacaWG0bGaaGykaiaadggacaaIOaGaaGimaiaaiYcacaWG 0bGaaGykaiaadwhacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiabgk HiTaqaaiabgkHiTiaadUeadaWgaaWcbaGaaGymaiaadIhaaeqaaOGa aGikaiaadYgacaaISaGaamiDaiaaiMcacaWGHbGaaGikaiaadYgaca aISaGaamiDaiaaiMcacaWG1bGaaGikaiaadYgacaaISaGaamiDaiaa iMcacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYd GccaaIOaGaam4samaaBaaaleaacaaIXaGaamiEaaqabaGccaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaadggacaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaaiMcadaWgaaWcbaGaamiEaaqabaGccaWG1bGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiabgUcaRiaaik dadaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGlbWa aSbaaSqaaiaaigdacaWG0baabeaakiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaamyDamaaBaaaleaacaWG0baabeaakiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaamizaiaadIhacqGHRaWkaeaacqGHRaWkda WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGlbWaaSba aSqaaiaaigdacaWG0bGaamiDaaqabaGccaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaa dsgacaWG4bGaaGypaiaadIgacaaIIaWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaGaaGilaaqaamaapedabeWcbaGaaGimaaqa aiaadYgaa0Gaey4kIipakiaadUeadaWgaaWcbaGaaGOmaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadAgacaWGKbGaamiEaiab gUcaRiaadUeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiBaiaaiY cacaWG0bGaaGykaiaadggacaaIOaGaamiBaiaaiYcacaWG0bGaaGyk aiaadwhadaWgaaWcbaGaamiEaaqabaGccaaIOaGaamiBaiaaiYcaca WG0bGaaGykaiabgkHiTiaadUeadaWgaaWcbaGaaGOmaaqabaGccaaI OaGaaGimaiaaiYcacaWG0bGaaGykaiaadggacaaIOaGaaGimaiaaiY cacaWG0bGaaGykaiaadwhadaWgaaWcbaGaamiEaaqabaGccaaIOaGa aGimaiaaiYcacaWG0bGaaGykaiabgUcaRiaadUeadaWgaaWcbaGaaG OmaiaadIhaaeqaaOGaaGikaiaaicdacaaISaGaamiDaiaaiMcacaWG HbGaaGikaiaaicdacaaISaGaamiDaiaaiMcacaWG1bGaaGikaiaaic dacaaISaGaamiDaiaaiMcacqGHsislaeaacqGHsislcaWGlbWaaSba aSqaaiaaikdacaWG4baabeaakiaaiIcacaWGSbGaaGilaiaadshaca aIPaGaamyyaiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaamyDaiaa iIcacaWGSbGaaGilaiaadshacaaIPaGaey4kaSYaa8qmaeqaleaaca aIWaaabaGaamiBaaqdcqGHRiI8aOGaam4samaaBaaaleaacaaIYaGa amiEaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadggaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiMcadaWgaaWcbaGaamiE aaqabaGccaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKb GaamiEaiabgUcaRiaaikdadaWdXaqabSqaaiaaicdaaeaacaWGSbaa niabgUIiYdGccaWGlbWaaSbaaSqaaiaaikdacaWG0baabeaakiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaamyDamaaBaaaleaacaWG0baa beaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhacq GHRaWkaeaacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniab gUIiYdGccaWGlbWaaSbaaSqaaiaaikdacaWG0bGaamiDaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhacaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiaadsgacaWG4bGaaGypaiaadIgacaaIIaWaaS baaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaaGOlaaaacaaI OaGaaGyoaiaaiMcaaaa@71CD@

Так как

                                                    Δ K 1 (0,t) K 2 (l,t) K 1 (l,t) K 2 (0,t))0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaey yyIORaam4samaaBaaaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGil aiaadshacaaIPaGaam4samaaBaaaleaacaaIYaaabeaakiaaiIcaca WGSbGaaGilaiaadshacaaIPaGaeyOeI0Iaam4samaaBaaaleaacaaI XaaabeaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaam4samaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGa aGykaiabgcMi5kaaicdacaaISaaaaa@56BA@

то (9) можно разрешить относительно u x (0,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWG4baabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaaa aa@3E02@  и u x (l,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWG4baabeaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaaa aa@3E39@ . Выразим их из (9) и получим нелокальные условия второго рода:

                                                u x (0,t)= α 11 u(0,t)+ α 12 u(l,t)+ 0 l P 1 (x,t)u(x,t)dx+ +2 0 l P 2 (x,t) u t (x,t)dx+ G 1 (t), u x (l,t)= α 21 u(0,t)+ α 22 u(l,t)+ 0 l P 3 (x,t)u(x,t)dx+ +2 0 l P 4 (x,t) u t (x,t)dx+ G 2 (t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaamyDamaaBaaaleaacaWG4baabeaakiaaiIcacaaIWaGaaGil aiaadshacaaIPaGaaGypaiabeg7aHnaaBaaaleaacaaIXaGaaGymaa qabaGccaWG1bGaaGikaiaaicdacaaISaGaamiDaiaaiMcacqGHRaWk cqaHXoqydaWgaaWcbaGaaGymaiaaikdaaeqaaOGaamyDaiaaiIcaca WGSbGaaGilaiaadshacaaIPaGaey4kaSYaa8qmaeqaleaacaaIWaaa baGaamiBaaqdcqGHRiI8aOGaamiuamaaBaaaleaacaaIXaaabeaaki aaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaamizaiaadIhacqGHRaWkaeaacqGHRaWkca aIYaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamiu amaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaamyDamaaBaaaleaacaWG0baabeaakiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamizaiaadIhacqGHRaWkcaWGhbWaaSbaaSqaai aaigdaaeqaaOGaaGikaiaadshacaaIPaGaaGilaaqaaiaadwhadaWg aaWcbaGaamiEaaqabaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykai aai2dacqaHXoqydaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaamyDaiaa iIcacaaIWaGaaGilaiaadshacaaIPaGaey4kaSIaeqySde2aaSbaaS qaaiaaikdacaaIYaaabeaakiaadwhacaaIOaGaamiBaiaaiYcacaWG 0bGaaGykaiabgUcaRmaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey 4kIipakiaadcfadaWgaaWcbaGaaG4maaqabaGccaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiaadsgacaWG4bGaey4kaScabaGaey4kaSIaaGOmamaapedabeWc baGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadcfadaWgaaWcbaGaaG inaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhadaWg aaWcbaGaamiDaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykai aadsgacaWG4bGaey4kaSIaam4ramaaBaaaleaacaaIYaaabeaakiaa iIcacaWG0bGaaGykaiaaiYcaaaaaaa@BF80@

где

                                        α 11 := 1 Δ [ K 1x (0,t) K 2 (l,t) K 1 (l,t) K 2x (0,t)], α 12 := a(l,t) a(0,t)Δ [ K 1x (l,t) K 2 (l,t) K 1 (l,t) K 2x (l,t)], P 1 (x,t):= 1 a(0,t)Δ [a(x,t) K 1x (x,t)) x K 2 (l,t) (a(x,t) K 2x (x,t)) x K 2 (l,t)+ + K 1tt (x,t) K 2 (l,t) K 1 (l,t) K 2tt (x,t)], P 2 (x,t):= 1 a(0,t)Δ [ K 1t (x,t) K 2 (l,t) K 1 (l,t) K 2t (x,t)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabuqaaa aabaGaeqySde2aaSbaaSqaaiaaigdacaaIXaaabeaakiaaiQdacaaI 9aWaaSaaaeaacaaIXaaabaGaeyiLdqeaaiaaiUfacaWGlbWaaSbaaS qaaiaaigdacaWG4baabeaakiaaiIcacaaIWaGaaGilaiaadshacaaI PaGaam4samaaBaaaleaacaaIYaaabeaakiaaiIcacaWGSbGaaGilai aadshacaaIPaGaeyOeI0Iaam4samaaBaaaleaacaaIXaaabeaakiaa iIcacaWGSbGaaGilaiaadshacaaIPaGaam4samaaBaaaleaacaaIYa GaamiEaaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaai2fa caaISaaabaGaeqySde2aaSbaaSqaaiaaigdacaaIYaaabeaakiaaiQ dacaaI9aGaeyOeI0YaaSaaaeaacaWGHbGaaGikaiaadYgacaaISaGa amiDaiaaiMcaaeaacaWGHbGaaGikaiaaicdacaaISaGaamiDaiaaiM cacqGHuoaraaGaaG4waiaadUeadaWgaaWcbaGaaGymaiaadIhaaeqa aOGaaGikaiaadYgacaaISaGaamiDaiaaiMcacaWGlbWaaSbaaSqaai aaikdaaeqaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGHsisl caWGlbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadYgacaaISaGaam iDaiaaiMcacaWGlbWaaSbaaSqaaiaaikdacaWG4baabeaakiaaiIca caWGSbGaaGilaiaadshacaaIPaGaaGyxaiaaiYcaaeaacaWGqbWaaS baaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca caaI6aGaaGypamaalaaabaGaaGymaaqaaiaadggacaaIOaGaaGimai aaiYcacaWG0bGaaGykaiabgs5aebaacaaIBbGaamyyaiaaiIcacaWG 4bGaaGilaiaadshacaaIPaGaam4samaaBaaaleaacaaIXaGaamiEaa qabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiMcadaWgaaWc baGaamiEaaqabaGccaWGlbWaaSbaaSqaaiaaikdaaeqaaOGaaGikai aadYgacaaISaGaamiDaiaaiMcacqGHsislcaaIOaGaamyyaiaaiIca caWG4bGaaGilaiaadshacaaIPaGaam4samaaBaaaleaacaaIYaGaam iEaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiMcadaWg aaWcbaGaamiEaaqabaGccaWGlbWaaSbaaSqaaiaaikdaaeqaaOGaaG ikaiaadYgacaaISaGaamiDaiaaiMcacqGHRaWkaeaacqGHRaWkcaWG lbWaaSbaaSqaaiaaigdacaWG0bGaamiDaaqabaGccaaIOaGaamiEai aaiYcacaWG0bGaaGykaiaadUeadaWgaaWcbaGaaGOmaaqabaGccaaI OaGaamiBaiaaiYcacaWG0bGaaGykaiabgkHiTiaadUeadaWgaaWcba GaaGymaaqabaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiaadUea daWgaaWcbaGaaGOmaiaadshacaWG0baabeaakiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaaGyxaiaaiYcaaeaacaWGqbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI6aGaaG ypamaalaaabaGaaGymaaqaaiaadggacaaIOaGaaGimaiaaiYcacaWG 0bGaaGykaiabgs5aebaacaaIBbGaam4samaaBaaaleaacaaIXaGaam iDaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadUeadaWg aaWcbaGaaGOmaaqabaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykai abgkHiTiaadUeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiBaiaa iYcacaWG0bGaaGykaiaadUeadaWgaaWcbaGaaGOmaiaadshaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIDbGaaGilaaaaaaa@0A87@

                                            G 1 (t):= 1 a(0,t)Δ ( 0 l [ K 1 (x,t) K 2 (l,t) K 1 (l,t) K 2 (x,t)]fdx+ + h 1tt (t) K 2 (l,t) K 1 (l,t) h 2tt (t)), α 21 := a(0,t) a(l,t)Δ [ K 1x (0,t) K 2 (0,t) K 1 (0,t) K 2x (0,t)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadEeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMca caaI6aGaaGypaiabgkHiTmaalaaabaGaaGymaaqaaiaadggacaaIOa GaaGimaiaaiYcacaWG0bGaaGykaiabgs5aebaacaaIOaWaa8qmaeqa leaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4waiaadUeadaWgaa WcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaa dUeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiBaiaaiYcacaWG0b GaaGykaiabgkHiTiaadUeadaWgaaWcbaGaaGymaaqabaGccaaIOaGa amiBaiaaiYcacaWG0bGaaGykaiaadUeadaWgaaWcbaGaaGOmaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2facaWGMbGaamiz aiaadIhacqGHRaWkaeaacqGHRaWkcaWGObWaaSbaaSqaaiaaigdaca WG0bGaamiDaaqabaGccaaIOaGaamiDaiaaiMcacaWGlbWaaSbaaSqa aiaaikdaaeqaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGHsi slcaWGlbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadYgacaaISaGa amiDaiaaiMcacaWGObWaaSbaaSqaaiaaikdacaWG0bGaamiDaaqaba GccaaIOaGaamiDaiaaiMcacaaIPaGaaGilaaqaaiabeg7aHnaaBaaa leaacaaIYaGaaGymaaqabaGccaaI6aGaaGypamaalaaabaGaamyyai aaiIcacaaIWaGaaGilaiaadshacaaIPaaabaGaamyyaiaaiIcacaWG SbGaaGilaiaadshacaaIPaGaeyiLdqeaaiaaiUfacaWGlbWaaSbaaS qaaiaaigdacaWG4baabeaakiaaiIcacaaIWaGaaGilaiaadshacaaI PaGaam4samaaBaaaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilai aadshacaaIPaGaeyOeI0Iaam4samaaBaaaleaacaaIXaaabeaakiaa iIcacaaIWaGaaGilaiaadshacaaIPaGaam4samaaBaaaleaacaaIYa GaamiEaaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaai2fa caaISaaaaaaa@AE74@

                                       α 22 := 1 Δ [ K 1x (l,t) K 2 (0,t) K 1 (0,t) K 2x (l,t)], P 3 (x,t):= 1 a(l,t)Δ [(a(x,t) K 1x (x,t )) x K 2 (0,t) (a(x,t) K 2x (x,t)) x K 1 (0,t)+ + K 1tt (x,t) K 2 (0,t) K 1 (0,t) K 2tt (x,t)], P 4 (x,t):= 1 a(l,t)Δ [ K 1t (x,t) K 2 (0,t) K 1 (0,t) K 2t (x,t)], G 2 (t):= 1 a(l,t)Δ ( 0 l [ K 1 (x,t) K 2 (0,t) K 1 (0,t) K 2 (x,t)]fdx h 1tt (t) K 2 (0,t)+ K 1 (0,t) h 2tt (t)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabyqaaa aabaGaeqySde2aaSbaaSqaaiaaikdacaaIYaaabeaakiaaiQdacaaI 9aGaeyOeI0YaaSaaaeaacaaIXaaabaGaeyiLdqeaaiaaiUfacaWGlb WaaSbaaSqaaiaaigdacaWG4baabeaakiaaiIcacaWGSbGaaGilaiaa dshacaaIPaGaam4samaaBaaaleaacaaIYaaabeaakiaaiIcacaaIWa GaaGilaiaadshacaaIPaGaeyOeI0Iaam4samaaBaaaleaacaaIXaaa beaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaam4samaaBaaale aacaaIYaGaamiEaaqabaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGyk aiaai2facaaISaaabaGaamiuamaaBaaaleaacaaIZaaabeaakiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGOoaiaai2dadaWcaaqaaiaa igdaaeaacaWGHbGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGHuo araaGaaG4waiaaiIcacaWGHbGaaGikaiaadIhacaaISaGaamiDaiaa iMcacaWGlbWaaSbaaSqaaiaaigdacaWG4baabeaakiaaiIcacaWG4b GaaGilaiaadshacaaIPaGaaGykamaaBaaaleaacaWG4baabeaakiaa dUeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiYcacaWG0b GaaGykaiabgkHiTiaaiIcacaWGHbGaaGikaiaadIhacaaISaGaamiD aiaaiMcacaWGlbWaaSbaaSqaaiaaikdacaWG4baabeaakiaaiIcaca WG4bGaaGilaiaadshacaaIPaGaaGykamaaBaaaleaacaWG4baabeaa kiaadUeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaaGimaiaaiYcaca WG0bGaaGykaiabgUcaRaqaaiabgUcaRiaadUeadaWgaaWcbaGaaGym aiaadshacaWG0baabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPa Gaam4samaaBaaaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaa dshacaaIPaGaeyOeI0Iaam4samaaBaaaleaacaaIXaaabeaakiaaiI cacaaIWaGaaGilaiaadshacaaIPaGaam4samaaBaaaleaacaaIYaGa amiDaiaadshaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca aIDbGaaGilaaqaaiaadcfadaWgaaWcbaGaaGinaaqabaGccaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaaiQdacaaI9aWaaSaaaeaacaaIXa aabaGaamyyaiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaeyiLdqea aiaaiUfacaWGlbWaaSbaaSqaaiaaigdacaWG0baabeaakiaaiIcaca WG4bGaaGilaiaadshacaaIPaGaam4samaaBaaaleaacaaIYaaabeaa kiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaeyOeI0Iaam4samaaBa aaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGa am4samaaBaaaleaacaaIYaGaamiDaaqabaGccaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaai2facaaISaaabaGaam4ramaaBaaaleaacaaI YaaabeaakiaaiIcacaWG0bGaaGykaiaaiQdacaaI9aWaaSaaaeaaca aIXaaabaGaamyyaiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaeyiL dqeaaiaaiIcadaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYd GccaaIBbGaam4samaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaam4samaaBaaaleaacaaIYaaabeaakiaaiI cacaaIWaGaaGilaiaadshacaaIPaGaeyOeI0Iaam4samaaBaaaleaa caaIXaaabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaam4sam aaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaaGyxaiaadAgacaWGKbGaamiEaiabgkHiTaqaaiabgkHiTiaadI gadaWgaaWcbaGaaGymaiaadshacaWG0baabeaakiaaiIcacaWG0bGa aGykaiaadUeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiY cacaWG0bGaaGykaiabgUcaRiaadUeadaWgaaWcbaGaaGymaaqabaGc caaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaadIgadaWgaaWcbaGaaG OmaiaadshacaWG0baabeaakiaaiIcacaWG0bGaaGykaiaaiMcacaaI Uaaaaaaa@273A@

Пусть теперь u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3D12@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  решение уравнения (1), удовлетворяющее условиям (2) и (5). Домножим уравнение (1) на K 1 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@3DD9@  и проинтегрируем по отрезку [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaamiBaiaai2faaaa@3C34@ . Аналогичную процедуру проделаем с ядром K 2 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@3DDA@ , получим

                                          0 l K 1 (x,t) u tt (x,t)dx 0 l K 1 (x,t)(a(x,t) u x ) x dx= 0 l K 1 (x,t)fdx, 0 l K 2 (x,t) u tt (x,t)dx 0 l K 2 (x,t)(a(x,t) u x ) x dx= 0 l K 2 (x,t)fdx. (10) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadUea daWgaaWcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiaadwhadaWgaaWcbaGaamiDaiaadshaaeqaaOGaaGikaiaadIha caaISaGaamiDaiaaiMcacaWGKbGaamiEaiabgkHiTmaapedabeWcba GaaGimaaqaaiaadYgaa0Gaey4kIipakiaadUeadaWgaaWcbaGaaGym aaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiIcacaWGHb GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG1bWaaSbaaSqaaiaa dIhaaeqaaOGaaGykamaaBaaaleaacaWG4baabeaakiaadsgacaWG4b GaaGypamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaa dUeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0b GaaGykaiaadAgacaWGKbGaamiEaiaaiYcaaeaadaWdXaqabSqaaiaa icdaaeaacaWGSbaaniabgUIiYdGccaWGlbWaaSbaaSqaaiaaikdaae qaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG1bWaaSbaaSqa aiaadshacaWG0baabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaamizaiaadIhacqGHsisldaWdXaqabSqaaiaaicdaaeaacaWGSbaa niabgUIiYdGccaWGlbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadI hacaaISaGaamiDaiaaiMcacaaIOaGaamyyaiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamyDamaaBaaaleaacaWG4baabeaakiaaiMcada WgaaWcbaGaamiEaaqabaGccaWGKbGaamiEaiaai2dadaWdXaqabSqa aiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGlbWaaSbaaSqaaiaaik daaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGMbGaamiz aiaadIhacaaIUaaaaiaaiIcacaaIXaGaaGimaiaaiMcaaaa@A905@

Подставим (8) в (10). Но тогда выполняются и равенства (6), из которых получены условия (5). Равенства (6) запишем в виде

                                                     0 l ( K 1 (x,t)u(x,t)) tt dxh " 1 (t)=0, 0 l ( K 2 (x,t)u(x,t)) tt dxh " 2 (t)=0. (11) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiIca caWGlbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI PaWaaSbaaSqaaiaadshacaWG0baabeaakiaadsgacaWG4bGaeyOeI0 IaamiAaiaaikcadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaa iMcacaaI9aGaaGimaiaaiYcaaeaadaWdXaqabSqaaiaaicdaaeaaca WGSbaaniabgUIiYdGccaaIOaGaam4samaaBaaaleaacaaIYaaabeaa kiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDaiaaiIcacaWG4b GaaGilaiaadshacaaIPaGaaGykamaaBaaaleaacaWG0bGaamiDaaqa baGccaWGKbGaamiEaiabgkHiTiaadIgacaaIIaWaaSbaaSqaaiaaik daaeqaaOGaaGikaiaadshacaaIPaGaaGypaiaaicdacaaIUaaaaiaa iIcacaaIXaGaaGymaiaaiMcaaaa@7369@

Эти условия можно свернуть таким образом:

                                                    2 t 2 0 l K 1 (x,t)u(x,t)dx h 1 (t) =0, 2 t 2 0 l K 2 (x,t)u(x,t)dx h 2 (t) =0. (12) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOa IyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGcdaWadaqaamaapedabe WcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadUeadaWgaaWcbaGa aGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaeyOeI0Ia amiAamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaaGaay 5waiaaw2faaiaai2dacaaIWaGaaGilaaqaamaalaaabaGaeyOaIy7a aWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiDamaaCaaaleqaba GaaGOmaaaaaaGcdaWadaqaamaapedabeWcbaGaaGimaaqaaiaadYga a0Gaey4kIipakiaadUeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam iEaiaaiYcacaWG0bGaaGykaiaadwhacaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiaadsgacaWG4bGaeyOeI0IaamiAamaaBaaaleaacaaIYa aabeaakiaaiIcacaWG0bGaaGykaaGaay5waiaaw2faaiaai2dacaaI WaGaaGOlaaaacaaIOaGaaGymaiaaikdacaaIPaaaaa@7A52@

Из условий согласования (4) вытекают начальные условия

                                                  0 l K i (x,0)u(x,0)dx= h i (0), t 0 l K i (x,t)u(x,t)dx | t=0 = h i (0),i=1,2. (13) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadUea daWgaaWcbaGaamyAaaqabaGccaaIOaGaamiEaiaaiYcacaaIWaGaaG ykaiaadwhacaaIOaGaamiEaiaaiYcacaaIWaGaaGykaiaadsgacaWG 4bGaaGypaiaadIgadaWgaaWcbaGaamyAaaqabaGccaaIOaGaaGimai aaiMcacaaISaaabaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baa amaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadUeada WgaaWcbaGaamyAaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4b GaaGiFamaaBaaaleaacaWG0bGaaGypaiaaicdaaeqaaOGaaGypaiqa dIgagaqbamaaBaaaleaacaWGPbaabeaakiaaiIcacaaIWaGaaGykai aaiYcacqGHaiIicaWGPbGaaGypaiaaigdacaaISaGaaGOmaiaai6ca aaGaaGikaiaaigdacaaIZaGaaGykaaaa@7478@

Задача Коши (12), (13) имеет единственное решение

                                                          0 l K 1 (x,t)u(x,t)dx= h 1 (t), 0 l K 2 (x,t)u(x,t)dx= h 2 (t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadUea daWgaaWcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG 4bGaaGypaiaadIgadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDai aaiMcacaaISaaabaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGH RiI8aOGaam4samaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaamizaiaadIhacaaI9aGaamiAamaaBaaaleaacaaIYaaabeaaki aaiIcacaWG0bGaaGykaiaaiYcaaaaaaa@64CC@

что и означает выполнение условий (3).

2 Единственность решения задачи

Теперь рассмотрим частный случай этой задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (3), в которой ядро представлено в виде K i (x,t)= Φ i (x) Ψ i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGPbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGypaiabfA6agnaaBaaaleaacaWGPbaabeaakiaaiIcacaWG4bGaaG ykaiabfI6aznaaBaaaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGyk aaaa@48E4@ . Тогда условия (3) можно записать таким образом:

                                                    0 l Φ i (x) Ψ i (t)u(x,t)dx= h i (t),i=1,2.(14) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaeuOPdy0aaSbaaSqaaiaa dMgaaeqaaOGaaGikaiaadIhacaaIPaGaeuiQdK1aaSbaaSqaaiaadM gaaeqaaOGaaGikaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamizaiaadIhacaaI9aGaamiAamaaBaaaleaaca WGPbaabeaakiaaiIcacaWG0bGaaGykaiaaiYcacaWGPbGaaGypaiaa igdacaaISaGaaGOmaiaai6cacaaIOaGaaGymaiaaisdacaaIPaaaaa@5A4C@

Будем считать, что Ψ i (t)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiQdK1aaS baaSqaaiaadMgaaeqaaOGaaGikaiaadshacaaIPaGaeyiyIKRaaGim aaaa@3F99@  всюду в [0,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaamivaiaai2faaaa@3C1C@  и обозначим h i (t) Ψ i (t) = T i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGObWaaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadshacaaIPaaabaGa euiQdK1aaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadshacaaIPaaaai aai2dacaWGubWaaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadshacaaI Paaaaa@46B9@ , тогда (14) можно представить так:

                                                         0 l Φ 1 (x)u(x,t)dx= T 1 (t), 0 l Φ 2 (x)u(x,t)dx= T 2 (t). (15) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiabfA6a gnaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGykaiaadwhaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaaGypaiaa dsfadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacaaISa aabaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaeuOP dy0aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaIPaGaamyDai aaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhacaaI9aGa amivamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaai6 caaaGaaGikaiaaigdacaaI1aGaaGykaaaa@657B@

Условия (5) для этого частного случая выглядят следующим образом:

                                           u x (0,t)= α 11 u(0,t)+ α 12 u(l,t)+ 0 l P 1 (x,t)u(x,t)dx+ G 1 (t), u x (l,t)= α 21 u(0,t)+ α 22 u(l,t)+ 0 l P 2 (x,t)u(x,t)dx+ G 2 (t), (16) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadwhadaWgaaWcbaGaamiEaaqabaGccaaIOaGaaGimaiaaiYca caWG0bGaaGykaiaai2dacqaHXoqydaWgaaWcbaGaaGymaiaaigdaae qaaOGaamyDaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaey4kaSIa eqySde2aaSbaaSqaaiaaigdacaaIYaaabeaakiaadwhacaaIOaGaam iBaiaaiYcacaWG0bGaaGykaiabgUcaRmaapedabeWcbaGaaGimaaqa aiaadYgaa0Gaey4kIipakiaadcfadaWgaaWcbaGaaGymaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhacaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiaadsgacaWG4bGaey4kaSIaam4ramaaBaaale aacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaaiYcaaeaacaWG1bWa aSbaaSqaaiaadIhaaeqaaOGaaGikaiaadYgacaaISaGaamiDaiaaiM cacaaI9aGaeqySde2aaSbaaSqaaiaaikdacaaIXaaabeaakiaadwha caaIOaGaaGimaiaaiYcacaWG0bGaaGykaiabgUcaRiabeg7aHnaaBa aaleaacaaIYaGaaGOmaaqabaGccaWG1bGaaGikaiaadYgacaaISaGa amiDaiaaiMcacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWGSbaani abgUIiYdGccaWGqbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIha caaISaGaamiDaiaaiMcacaWG1bGaaGikaiaadIhacaaISaGaamiDai aaiMcacaWGKbGaamiEaiabgUcaRiaadEeadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaamiDaiaaiMcacaaISaaaaiaaiIcacaaIXaGaaGOnai aaiMcaaaa@99AB@

где

                                             α 11 := 1 Δ [ Φ 1 (0) Φ 2 (l) Φ 1 (l) Φ 2 (0)], α 12 := a(l,t) a(0,t)Δ [ Φ 1 (l) Φ 2 (l) Φ 1 (l) Φ 2 (l)], P 1 (x,t):= a x a(0,t)Δ [ Φ 1 Φ 2 (l) Φ 1 (l) Φ 2 ], G 1 (t):= 1 a(0,t)Δ ( 0 l [ Φ 1 (l) Φ 2 (x) Φ 1 (x) Φ 2 (l)]fdx T 1 (t) Φ 2 (l)+ Φ 1 (l) T 2 (t)), α 21 := a(0,t) a(l,t)Δ [ Φ 1 (0) Φ 2 (0) Φ 1 (0) Φ 2 (0)], α 22 := 1 Δ [ Φ 1 (l) Φ 2 (0) Φ 1 (0) Φ 2 (l)], P 2 (x,t):= a x a(l,t)Δ [ Φ 1 Φ 2 (0) Φ 1 (0) Φ 2 ], G 2 (t):= 1 a(l,t)Δ ( 0 l [ Φ 1 (0) Φ 2 (x) Φ 1 (x) Φ 2 (0)]fdx T 1 (t) Φ 2 (0)+ Φ 1 (0) T 2 (t)), Δ:= Φ 1 (0) Φ 2 (l) Φ 1 (l) Φ 2 (0)0. (17) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabSqaaa aaaeaacqaHXoqydaWgaaWcbaGaaGymaiaaigdaaeqaaOGaaGOoaiaa i2dadaWcaaqaaiaaigdaaeaacqGHuoaraaGaaG4waiqbfA6agzaafa WaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaaicdacaaIPaGaeuOPdy0a aSbaaSqaaiaaikdaaeqaaOGaaGikaiaadYgacaaIPaGaeyOeI0Iaeu OPdy0aaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadYgacaaIPaGafuOP dyKbauaadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiMcaca aIDbGaaGilaaqaaiabeg7aHnaaBaaaleaacaaIXaGaaGOmaaqabaGc caaI6aGaaGypaiabgkHiTmaalaaabaGaamyyaiaaiIcacaWGSbGaaG ilaiaadshacaaIPaaabaGaamyyaiaaiIcacaaIWaGaaGilaiaadsha caaIPaGaeyiLdqeaaiaaiUfacuqHMoGrgaqbamaaBaaaleaacaaIXa aabeaakiaaiIcacaWGSbGaaGykaiabfA6agnaaBaaaleaacaaIYaaa beaakiaaiIcacaWGSbGaaGykaiabgkHiTiabfA6agnaaBaaaleaaca aIXaaabeaakiaaiIcacaWGSbGaaGykaiqbfA6agzaafaWaaSbaaSqa aiaaikdaaeqaaOGaaGikaiaadYgacaaIPaGaaGyxaiaaiYcaaeaaca WGqbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiD aiaaiMcacaaI6aGaaGypamaalaaabaGaamyyamaaBaaaleaacaWG4b aabeaaaOqaaiaadggacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiab gs5aebaacaaIBbGafuOPdyKbauGbauaadaWgaaWcbaGaaGymaaqaba GccqqHMoGrdaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiBaiaaiMca cqGHsislcqqHMoGrdaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiBai aaiMcacuqHMoGrgaqbgaqbamaaBaaaleaacaaIYaaabeaakiaai2fa caaISaaabaGaam4ramaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0b GaaGykaiaaiQdacaaI9aWaaSaaaeaacaaIXaaabaGaamyyaiaaiIca caaIWaGaaGilaiaadshacaaIPaGaeyiLdqeaaiaaiIcadaWdXaqabS qaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaaIBbGaeuOPdy0aaSba aSqaaiaaigdaaeqaaOGaaGikaiaadYgacaaIPaGaeuOPdy0aaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadIhacaaIPaGaeyOeI0IaeuOPdy0a aSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaIPaGaeuOPdy0aaS baaSqaaiaaikdaaeqaaOGaaGikaiaadYgacaaIPaGaaGyxaiaadAga caWGKbGaamiEaiabgkHiTaqaaiabgkHiTiqadsfagaqbgaqbamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiabfA6agnaaBaaa leaacaaIYaaabeaakiaaiIcacaWGSbGaaGykaiabgUcaRiabfA6agn aaBaaaleaacaaIXaaabeaakiaaiIcacaWGSbGaaGykaiqadsfagaqb gaqbamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaaiM cacaaISaaabaGaeqySde2aaSbaaSqaaiaaikdacaaIXaaabeaakiaa iQdacaaI9aWaaSaaaeaacaWGHbGaaGikaiaaicdacaaISaGaamiDai aaiMcaaeaacaWGHbGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGH uoaraaGaaG4waiqbfA6agzaafaWaaSbaaSqaaiaaigdaaeqaaOGaaG ikaiaaicdacaaIPaGaeuOPdy0aaSbaaSqaaiaaikdaaeqaaOGaaGik aiaaicdacaaIPaGaeyOeI0IaeuOPdy0aaSbaaSqaaiaaigdaaeqaaO GaaGikaiaaicdacaaIPaGafuOPdyKbauaadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaaGimaiaaiMcacaaIDbGaaGilaaqaaiabeg7aHnaaBa aaleaacaaIYaGaaGOmaaqabaGccaaI6aGaaGypaiabgkHiTmaalaaa baGaaGymaaqaaiabgs5aebaacaaIBbGafuOPdyKbauaadaWgaaWcba GaaGymaaqabaGccaaIOaGaamiBaiaaiMcacqqHMoGrdaWgaaWcbaGa aGOmaaqabaGccaaIOaGaaGimaiaaiMcacqGHsislcqqHMoGrdaWgaa WcbaGaaGymaaqabaGccaaIOaGaaGimaiaaiMcacuqHMoGrgaqbamaa BaaaleaacaaIYaaabeaakiaaiIcacaWGSbGaaGykaiaai2facaaISa aabaGaamiuamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaaGOoaiaai2dadaWcaaqaaiaadggadaWgaaWcba GaamiEaaqabaaakeaacaWGHbGaaGikaiaadYgacaaISaGaamiDaiaa iMcacqGHuoaraaGaaG4waiqbfA6agzaafyaafaWaaSbaaSqaaiaaig daaeqaaOGaeuOPdy0aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaaicda caaIPaGaeyOeI0IaeuOPdy0aaSbaaSqaaiaaigdaaeqaaOGaaGikai aaicdacaaIPaGafuOPdyKbauGbauaadaWgaaWcbaGaaGOmaaqabaGc caaIDbGaaGilaaqaaiaadEeadaWgaaWcbaGaaGOmaaqabaGccaaIOa GaamiDaiaaiMcacaaI6aGaaGypamaalaaabaGaaGymaaqaaiaadgga caaIOaGaamiBaiaaiYcacaWG0bGaaGykaiabgs5aebaacaaIOaWaa8 qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4waiabfA6a gnaaBaaaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGykaiabfA6agn aaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGykaiabgkHiTiab fA6agnaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGykaiabfA 6agnaaBaaaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGykaiaai2fa caWGMbGaamizaiaadIhacqGHsislaeaacqGHsislceWGubGbauGbau aadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacqqHMoGr daWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiMcacqGHRaWkcq qHMoGrdaWgaaWcbaGaaGymaaqabaGccaaIOaGaaGimaiaaiMcaceWG ubGbauGbauaadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiM cacaaIPaGaaGilaaqaaiabgs5aejaaiQdacaaI9aGaeuOPdy0aaSba aSqaaiaaigdaaeqaaOGaaGikaiaaicdacaaIPaGaeuOPdy0aaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadYgacaaIPaGaeyOeI0IaeuOPdy0a aSbaaSqaaiaaigdaaeqaaOGaaGikaiaadYgacaaIPaGaeuOPdy0aaS baaSqaaiaaikdaaeqaaOGaaGikaiaaicdacaaIPaGaeyiyIKRaaGim aiaai6caaaGaaGikaiaaigdacaaI3aGaaGykaaaa@9F31@

Введем понятие обобщенного решения. Следуя известной процедуре [1], считая что u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@3901@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  классическое решение, умножим равенство (1) на гладкую функцию, проинтегрируем по области Q T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaWGubaabeaaaaa@39E2@  и, подставляя краевые условия, получим равенство:

                                         0 T 0 l [ u t v t +a u x v x ]dxdt+ 0 τ α 21 v(l,t)a(l,t) v t (0,t)dt+ + 0 τ α 22 v(l,t)a(l,t) v t (l,t)dt+ 0 τ 0 l P 2 (x,t)v(l,t)a(l,t)u(x,t)dxdt 0 τ α 11 v(0,t)a(0,t) v t (0,t)dt 0 τ α 12 v(0,t)a(0,t) v t (l,t)dt 0 τ 0 l P 1 (x,t)v(0,t)a(0,t)u(x,t)dxdt= = 0 l v(x,0)ψ(x)dx+ 0 T 0 l v(x,t)fdxdt. (18) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabuqaaa aabaWaa8qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOWaa8qm aeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4waiabgkHiTi aadwhadaWgaaWcbaGaamiDaaqabaGccaWG2bWaaSbaaSqaaiaadsha aeqaaOGaey4kaSIaamyyaiaadwhadaWgaaWcbaGaamiEaaqabaGcca WG2bWaaSbaaSqaaiaadIhaaeqaaOGaaGyxaiaadsgacaWG4bGaamiz aiaadshacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey 4kIipakiabeg7aHnaaBaaaleaacaaIYaGaaGymaaqabaGccaWG2bGa aGikaiaadYgacaaISaGaamiDaiaaiMcacaWGHbGaaGikaiaadYgaca aISaGaamiDaiaaiMcacaWG2bWaaSbaaSqaaiaadshaaeqaaOGaaGik aiaaicdacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiabgUcaRaqaai abgUcaRmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGa eqySde2aaSbaaSqaaiaaikdacaaIYaaabeaakiaadAhacaaIOaGaam iBaiaaiYcacaWG0bGaaGykaiaadggacaaIOaGaamiBaiaaiYcacaWG 0bGaaGykaiaadAhadaWgaaWcbaGaamiDaaqabaGccaaIOaGaamiBai aaiYcacaWG0bGaaGykaiaadsgacaWG0bGaey4kaSYaa8qmaeqaleaa caaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaae aacaWGSbaaniabgUIiYdGccaWGqbWaaSbaaSqaaiaaikdaaeqaaOGa aGikaiaadIhacaaISaGaamiDaiaaiMcacaWG2bGaaGikaiaadYgaca aISaGaamiDaiaaiMcacaWGHbGaaGikaiaadYgacaaISaGaamiDaiaa iMcacaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaam iEaiaadsgacaWG0bGaeyOeI0cabaGaeyOeI0Yaa8qmaeqaleaacaaI WaaabaGaeqiXdqhaniabgUIiYdGccqaHXoqydaWgaaWcbaGaaGymai aaigdaaeqaaOGaamODaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGa amyyaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamODamaaBaaale aacaWG0baabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamiz aiaadshacqGHsisldaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey 4kIipakiabeg7aHnaaBaaaleaacaaIXaGaaGOmaaqabaGccaWG2bGa aGikaiaaicdacaaISaGaamiDaiaaiMcacaWGHbGaaGikaiaaicdaca aISaGaamiDaiaaiMcacaWG2bWaaSbaaSqaaiaadshaaeqaaOGaaGik aiaadYgacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiabgkHiTaqaai abgkHiTmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWa a8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamiuamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa amODaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamyyaiaaiIcaca aIWaGaaGilaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGaaGilaiaa dshacaaIPaGaamizaiaadIhacaWGKbGaamiDaiaai2daaeaacaaI9a Waa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamODaiaa iIcacaWG4bGaaGilaiaaicdacaaIPaGaeqiYdKNaaGikaiaadIhaca aIPaGaamizaiaadIhacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWG ubaaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgU IiYdGccaWG2bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGMbGa amizaiaadIhacaWGKbGaamiDaiaai6caaaGaaGikaiaaigdacaaI4a GaaGykaaaa@2794@

Определение. Обобщенным решением задачи (1),(2), (16) будем называть функцию u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaeyicI4maaa@3E96@   W 2 1 ( Q T ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyicI4Saam 4vamaaDaaaleaacaaIYaaabaGaaGymaaaakiaaiIcacaWGrbWaaSba aSqaaiaadsfaaeqaaOGaaGykaaaa@3F5F@ , удовлетворяющую условию u(x,0)=ϕ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaaicdacaaIPaGaaGypaiabew9aMjaaiIcacaWG 4bGaaGykaaaa@41C4@  и тождеству

                                    0 T 0 l [ u t v t +a u x v x ]dxdt 0 T v(l,t)a(l,t) u x (l,t)dt+ 0 T v(0,t)a(0,t) u x (0,t)dt= = 0 l v(x,0)ψ(x)dx+ 0 T 0 l v(x,t)fdxdt (19) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaapedabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakmaapeda beWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiUfacqGHsislca WG1bWaaSbaaSqaaiaadshaaeqaaOGaamODamaaBaaaleaacaWG0baa beaakiabgUcaRiaadggacaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaam ODamaaBaaaleaacaWG4baabeaakiaai2facaWGKbGaamiEaiaadsga caWG0bGaeyOeI0Yaa8qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRi I8aOGaamODaiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaamyyaiaa iIcacaWGSbGaaGilaiaadshacaaIPaGaamyDamaaBaaaleaacaWG4b aabeaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaamizaiaadsha cqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWGubaaniabgUIiYdGcca WG2bGaaGikaiaaicdacaaISaGaamiDaiaaiMcacaWGHbGaaGikaiaa icdacaaISaGaamiDaiaaiMcacaWG1bWaaSbaaSqaaiaadIhaaeqaaO GaaGikaiaaicdacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiaai2da aeaacaaI9aWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aO GaamODaiaaiIcacaWG4bGaaGilaiaaicdacaaIPaGaeqiYdKNaaGik aiaadIhacaaIPaGaamizaiaadIhacqGHRaWkdaWdXaqabSqaaiaaic daaeaacaWGubaaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWG SbaaniabgUIiYdGccaWG2bGaaGikaiaadIhacaaISaGaamiDaiaaiM cacaWGMbGaamizaiaadIhacaWGKbGaamiDaaaacaaIOaGaaGymaiaa iMdacaaIPaaaaa@A2E1@

для любой функции v(x,t) W ^ 2 1 ( Q T ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaeyicI48aaecaaeaacaWGxbaa caGLcmaadaqhaaWcbaGaaGOmaaqaaiaaigdaaaGccaaIOaGaamyuam aaBaaaleaacaWGubaabeaakiaaiMcaaaa@452D@ ,

                                              где W ^ 2 1 ( Q T )={v(x,t):v(x,t) W 2 1 ( Q T ),v(x,T)=0}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjcVlaado dbcaWG0qGaamyneiaayIW7caaMe8UaaGjbVpaaHaaabaGaam4vaaGa ayPadaWaa0baaSqaaiaaikdaaeaacaaIXaaaaOGaaGikaiaadgfada WgaaWcbaGaamivaaqabaGccaaIPaGaaGypaiaaiUhacaWG2bGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaaI6aGaamODaiaaiIcacaWG4b GaaGilaiaadshacaaIPaGaeyicI4Saam4vamaaDaaaleaacaaIYaaa baGaaGymaaaakiaaiIcacaWGrbWaaSbaaSqaaiaadsfaaeqaaOGaaG ykaiaaiYcacaWG2bGaaGikaiaadIhacaaISaGaamivaiaaiMcacaaI 9aGaaGimaiaai2hacaaIUaaaaa@63F2@

Теорема. Если выполнены условия

                                                 a(x,t), a t (x,t)C( Q ¯ T ), Φ i C 2 [0,l], Ψ i (t)0 t[0,T] α 12 a(0,t)+ α 21 a(l,t)=0, α 11 a(0,0) ξ 1 2 +2 α 12 a(0,0) ξ 1 ξ 2 α 22 a(l,0) ξ 2 2 0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaa dggadaWgaaWcbaGaamiDaaqabaGccaaIOaGaamiEaiaaiYcacaWG0b GaaGykaiabgIGiolaadoeacaaIOaWaa0aaaeaacaWGrbaaamaaBaaa leaacaWGubaabeaakiaaiMcacaaISaaabaGaeuOPdy0aaSbaaSqaai aadMgaaeqaaOGaeyicI4Saam4qamaaCaaaleqabaGaaGOmaaaakiaa iUfacaaIWaGaaGilaiaadYgacaaIDbGaaGilaiabfI6aznaaBaaale aacaWGPbaabeaakiaaiIcacaWG0bGaaGykaiabgcMi5kaaicdacaaI GaGaaGiiaiaaiccacqGHaiIicaWG0bGaeyicI4SaaG4waiaaicdaca aISaGaamivaiaai2faaeaacqaHXoqydaWgaaWcbaGaaGymaiaaikda aeqaaOGaamyyaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaey4kaS IaeqySde2aaSbaaSqaaiaaikdacaaIXaaabeaakiaadggacaaIOaGa amiBaiaaiYcacaWG0bGaaGykaiaai2dacaaIWaGaaGilaaqaaiabeg 7aHnaaBaaaleaacaaIXaGaaGymaaqabaGccaWGHbGaaGikaiaaicda caaISaGaaGimaiaaiMcacqaH+oaEdaqhaaWcbaGaaGymaaqaaiaaik daaaGccqGHRaWkcaaIYaGaeqySde2aaSbaaSqaaiaaigdacaaIYaaa beaakiaadggacaaIOaGaaGimaiaaiYcacaaIWaGaaGykaiabe67a4n aaBaaaleaacaaIXaaabeaakiabe67a4naaBaaaleaacaaIYaaabeaa kiabgkHiTiabeg7aHnaaBaaaleaacaaIYaGaaGOmaaqabaGccaWGHb GaaGikaiaadYgacaaISaGaaGimaiaaiMcacqaH+oaEdaqhaaWcbaGa aGOmaaqaaiaaikdaaaGccqGHLjYScaaIWaGaaGilaaaaaaa@A2D1@

то существует не более одного обобщенного решения поставленной задачи.

Доказательство. Покажем, что существует не более одного решения задачи. Предположим, что существует два решения u 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaaaaa@39E8@  и u 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIYaaabeaaaaa@39E9@ . Тогда u= u 1 u 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 dacaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamyDamaaBaaa leaacaaIYaaabeaaaaa@3E82@  удовлетворяет тождеству:

                                         0 T 0 l [ u t v t +a u x v x ]dxdt+ 0 τ α 21 v(l,t)a(l,t) v t (0,t)dt+ + 0 τ α 22 v(l,t)a(l,t) v t (l,t)dt+ 0 τ 0 l P 2 (x,t)v(l,t)a(l,t)u(x,t)dxdt 0 τ α 11 v(0,t)a(0,t) v t (0,t)dt 0 τ α 12 v(0,t)a(0,t) v t (l,t)dt 0 τ 0 l P 1 (x,t)v(0,t)a(0,t)u(x,t)dxdt=0. (20) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaWaa8qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOWaa8qm aeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4waiabgkHiTi aadwhadaWgaaWcbaGaamiDaaqabaGccaWG2bWaaSbaaSqaaiaadsha aeqaaOGaey4kaSIaamyyaiaadwhadaWgaaWcbaGaamiEaaqabaGcca WG2bWaaSbaaSqaaiaadIhaaeqaaOGaaGyxaiaadsgacaWG4bGaamiz aiaadshacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey 4kIipakiabeg7aHnaaBaaaleaacaaIYaGaaGymaaqabaGccaWG2bGa aGikaiaadYgacaaISaGaamiDaiaaiMcacaWGHbGaaGikaiaadYgaca aISaGaamiDaiaaiMcacaWG2bWaaSbaaSqaaiaadshaaeqaaOGaaGik aiaaicdacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiabgUcaRaqaai abgUcaRmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGa eqySde2aaSbaaSqaaiaaikdacaaIYaaabeaakiaadAhacaaIOaGaam iBaiaaiYcacaWG0bGaaGykaiaadggacaaIOaGaamiBaiaaiYcacaWG 0bGaaGykaiaadAhadaWgaaWcbaGaamiDaaqabaGccaaIOaGaamiBai aaiYcacaWG0bGaaGykaiaadsgacaWG0bGaey4kaSYaa8qmaeqaleaa caaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaae aacaWGSbaaniabgUIiYdGccaWGqbWaaSbaaSqaaiaaikdaaeqaaOGa aGikaiaadIhacaaISaGaamiDaiaaiMcacaWG2bGaaGikaiaadYgaca aISaGaamiDaiaaiMcacaWGHbGaaGikaiaadYgacaaISaGaamiDaiaa iMcacaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaam iEaiaadsgacaWG0bGaeyOeI0cabaGaeyOeI0Yaa8qmaeqaleaacaaI WaaabaGaeqiXdqhaniabgUIiYdGccqaHXoqydaWgaaWcbaGaaGymai aaigdaaeqaaOGaamODaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGa amyyaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamODamaaBaaale aacaWG0baabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamiz aiaadshacqGHsisldaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey 4kIipakiabeg7aHnaaBaaaleaacaaIXaGaaGOmaaqabaGccaWG2bGa aGikaiaaicdacaaISaGaamiDaiaaiMcacaWGHbGaaGikaiaaicdaca aISaGaamiDaiaaiMcacaWG2bWaaSbaaSqaaiaadshaaeqaaOGaaGik aiaadYgacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiabgkHiTaqaai abgkHiTmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWa a8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamiuamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa amODaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamyyaiaaiIcaca aIWaGaaGilaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGaaGilaiaa dshacaaIPaGaamizaiaadIhacaWGKbGaamiDaiaai2dacaaIWaGaaG OlaaaacaaIOaGaaGOmaiaaicdacaaIPaaaaa@0675@

Выберем в тождестве (18) с f(x,t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypaiaaicdaaaa@3E84@  и ψ(x)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaadIhacaaIPaGaaGypaiaaicdaaaa@3DB8@  

                                                      v(x,t)= τ t u(x,η)dη,0tτ, 0,τtT. (21) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypamaaceaabaqbaeqabiqa aaqaamaapedabeWcbaGaeqiXdqhabaGaamiDaaqdcqGHRiI8aOGaam yDaiaaiIcacaWG4bGaaGilaiabeE7aOjaaiMcacaWGKbGaeq4TdGMa aGilaiaaicdacqGHKjYOcaWG0bGaeyizImQaeqiXdqNaaGilaaqaai aaicdacaaISaGaeqiXdqNaeyizImQaamiDaiabgsMiJkaadsfacaaI UaaaaaGaay5EaaGaaGikaiaaikdacaaIXaGaaGykaaaa@6099@

Проинтегрируем по частям некоторые слагаемые:

                                              0 τ 0 l u t udxdt= 1 2 0 l u 2 (x,τ)dx, 0 τ 0 l a u x v x dxdt= 1 2 ( 0 τ 0 l a t v x 2 dxdt+ 0 l a(x,0) v x 2 (x,0)dx). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiabgkHiTmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8 aOWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamyDam aaBaaaleaacaWG0baabeaakiaadwhacaWGKbGaamiEaiaadsgacaWG 0bGaaGypaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaWaa8qmae qaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamyDamaaCaaaleqa baGaaGOmaaaakiaaiIcacaWG4bGaaGilaiabes8a0jaaiMcacaWGKb GaamiEaiaaiYcaaeaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Ga ey4kIipakmaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipaki aadggacaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaamODamaaBaaaleaa caWG4baabeaakiaadsgacaWG4bGaamizaiaadshacaaI9aGaeyOeI0 YaaSaaaeaacaaIXaaabaGaaGOmaaaacaaIOaWaa8qmaeqaleaacaaI WaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaaca WGSbaaniabgUIiYdGccaWGHbWaaSbaaSqaaiaadshaaeqaaOGaamOD amaaDaaaleaacaWG4baabaGaaGOmaaaakiaadsgacaWG4bGaamizai aadshacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIi YdGccaWGHbGaaGikaiaadIhacaaISaGaaGimaiaaiMcacaWG2bWaa0 baaSqaaiaadIhaaeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaaGim aiaaiMcacaWGKbGaamiEaiaaiMcacaaIUaaaaaaa@9367@

Подставляя в (20), получим:

                                   null

Проинтегрируем по частям и подставим в (22) такие интегралы:

                                    0 τ α 11 v(0,t)a(0,t) v t (0,t)dt= 1 2 α 11 a(0,0) v 2 (0,0) 1 2 0 τ α 11 a t (0,t) v 2 (0,t)dt, 0 τ α 12 v(0,t)a(0,t) v t (l,t)dt= α 12 a(0,0)v(0,0)v(l,0) 0 τ α 12 a t (0,t)v(0,t)v(l,t)dt 0 τ α 12 a(0,t) v t (0,t)v(l,t)dt, 0 τ α 22 v(l,t)a(l,t) v t (l,t)dt= 1 2 α 22 a(l,0) v 2 (l,0) 1 2 0 τ α 22 a t (l,t) v 2 (l,t)dt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccqaH XoqydaWgaaWcbaGaaGymaiaaigdaaeqaaOGaamODaiaaiIcacaaIWa GaaGilaiaadshacaaIPaGaamyyaiaaiIcacaaIWaGaaGilaiaadsha caaIPaGaamODamaaBaaaleaacaWG0baabeaakiaaiIcacaaIWaGaaG ilaiaadshacaaIPaGaamizaiaadshacaaI9aGaeyOeI0YaaSaaaeaa caaIXaaabaGaaGOmaaaacqaHXoqydaWgaaWcbaGaaGymaiaaigdaae qaaOGaamyyaiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGaamODamaa CaaaleqabaGaaGOmaaaakiaaiIcacaaIWaGaaGilaiaaicdacaaIPa GaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXaqabSqaaiaa icdaaeaacqaHepaDa0Gaey4kIipakiabeg7aHnaaBaaaleaacaaIXa GaaGymaaqabaGccaWGHbWaaSbaaSqaaiaadshaaeqaaOGaaGikaiaa icdacaaISaGaamiDaiaaiMcacaWG2bWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaaicdacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiaaiYca aeaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakiabeg 7aHnaaBaaaleaacaaIXaGaaGOmaaqabaGccaWG2bGaaGikaiaaicda caaISaGaamiDaiaaiMcacaWGHbGaaGikaiaaicdacaaISaGaamiDai aaiMcacaWG2bWaaSbaaSqaaiaadshaaeqaaOGaaGikaiaadYgacaaI SaGaamiDaiaaiMcacaWGKbGaamiDaiaai2dacqGHsislcqaHXoqyda WgaaWcbaGaaGymaiaaikdaaeqaaOGaamyyaiaaiIcacaaIWaGaaGil aiaaicdacaaIPaGaamODaiaaiIcacaaIWaGaaGilaiaaicdacaaIPa GaamODaiaaiIcacaWGSbGaaGilaiaaicdacaaIPaGaeyOeI0Yaa8qm aeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccqaHXoqydaWgaa WcbaGaaGymaiaaikdaaeqaaOGaamyyamaaBaaaleaacaWG0baabeaa kiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamODaiaaiIcacaaIWa GaaGilaiaadshacaaIPaGaamODaiaaiIcacaWGSbGaaGilaiaadsha caaIPaGaamizaiaadshacqGHsislaeaacqGHsisldaWdXaqabSqaai aaicdaaeaacqaHepaDa0Gaey4kIipakiabeg7aHnaaBaaaleaacaaI XaGaaGOmaaqabaGccaWGHbGaaGikaiaaicdacaaISaGaamiDaiaaiM cacaWG2bWaaSbaaSqaaiaadshaaeqaaOGaaGikaiaaicdacaaISaGa amiDaiaaiMcacaWG2bGaaGikaiaadYgacaaISaGaamiDaiaaiMcaca WGKbGaamiDaiaaiYcaaeaadaWdXaqabSqaaiaaicdaaeaacqaHepaD a0Gaey4kIipakiabeg7aHnaaBaaaleaacaaIYaGaaGOmaaqabaGcca WG2bGaaGikaiaadYgacaaISaGaamiDaiaaiMcacaWGHbGaaGikaiaa dYgacaaISaGaamiDaiaaiMcacaWG2bWaaSbaaSqaaiaadshaaeqaaO GaaGikaiaadYgacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiaai2da cqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabeg7aHnaaBaaale aacaaIYaGaaGOmaaqabaGccaWGHbGaaGikaiaadYgacaaISaGaaGim aiaaiMcacaWG2bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadYgaca aISaGaaGimaiaaiMcacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaa amaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaeqySde 2aaSbaaSqaaiaaikdacaaIYaaabeaakiaadggadaWgaaWcbaGaamiD aaqabaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiaadAhadaahaa WcbeqaaiaaikdaaaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiaa dsgacaWG0bGaaGOlaaaaaaa@2171@

Учитывая условия теоремы α 12 a(0,t)+ α 21 a(l,t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaigdacaaIYaaabeaakiaadggacaaIOaGaaGimaiaaiYca caWG0bGaaGykaiabgUcaRiabeg7aHnaaBaaaleaacaaIYaGaaGymaa qabaGccaWGHbGaaGikaiaadYgacaaISaGaamiDaiaaiMcacaaI9aGa aGimaaaa@4AA1@ , получим:

                                  0 l [ u 2 (x,τ)+a(x,0) v x 2 (x,0)]dx= 0 τ 0 l a t v x 2 dxdt+[ α 11 a(0,0) v 2 (0,0)+ +2 α 12 a(0,0)v(0,0)v(l,0) α 22 a(l,0) v 2 (l,0)]+ 0 τ α 11 a t (0,t) v 2 (0,t)dt 0 τ α 22 a t (l,t) v 2 (l,t)dt+2 0 τ α 12 a t (0,t)v(0,t)v(l,t)dt2 0 τ 0 l [ P 1 (x,t)v(0,t)a(0,t)+ + P 2 (x,t)v(l,t)a(l,t)]u(x,t)dxdt. (23) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4w aiaadwhadaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacq aHepaDcaaIPaGaey4kaSIaamyyaiaaiIcacaWG4bGaaGilaiaaicda caaIPaGaamODamaaDaaaleaacaWG4baabaGaaGOmaaaakiaaiIcaca WG4bGaaGilaiaaicdacaaIPaGaaGyxaiaadsgacaWG4bGaaGypaiab gkHiTmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8 qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamyyamaaBaaa leaacaWG0baabeaakiaadAhadaqhaaWcbaGaamiEaaqaaiaaikdaaa GccaWGKbGaamiEaiaadsgacaWG0bGaey4kaSIaaG4waiabeg7aHnaa BaaaleaacaaIXaGaaGymaaqabaGccaWGHbGaaGikaiaaicdacaaISa GaaGimaiaaiMcacaWG2bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaa icdacaaISaGaaGimaiaaiMcacqGHRaWkaeaacqGHRaWkcaaIYaGaeq ySde2aaSbaaSqaaiaaigdacaaIYaaabeaakiaadggacaaIOaGaaGim aiaaiYcacaaIWaGaaGykaiaadAhacaaIOaGaaGimaiaaiYcacaaIWa GaaGykaiaadAhacaaIOaGaamiBaiaaiYcacaaIWaGaaGykaiabgkHi Tiabeg7aHnaaBaaaleaacaaIYaGaaGOmaaqabaGccaWGHbGaaGikai aadYgacaaISaGaaGimaiaaiMcacaWG2bWaaWbaaSqabeaacaaIYaaa aOGaaGikaiaadYgacaaISaGaaGimaiaaiMcacaaIDbGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccqaHXoqydaWg aaWcbaGaaGymaiaaigdaaeqaaOGaamyyamaaBaaaleaacaWG0baabe aakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamODamaaCaaaleqa baGaaGOmaaaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamizai aadshacqGHsislaeaacqGHsisldaWdXaqabSqaaiaaicdaaeaacqaH epaDa0Gaey4kIipakiabeg7aHnaaBaaaleaacaaIYaGaaGOmaaqaba GccaWGHbWaaSbaaSqaaiaadshaaeqaaOGaaGikaiaadYgacaaISaGa amiDaiaaiMcacaWG2bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadY gacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiabgUcaRiaaikdadaWd XaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakiabeg7aHnaaBa aaleaacaaIXaGaaGOmaaqabaGccaWGHbWaaSbaaSqaaiaadshaaeqa aOGaaGikaiaaicdacaaISaGaamiDaiaaiMcacaWG2bGaaGikaiaaic dacaaISaGaamiDaiaaiMcacaWG2bGaaGikaiaadYgacaaISaGaamiD aiaaiMcacaWGKbGaamiDaiabgkHiTiaaikdadaWdXaqabSqaaiaaic daaeaacqaHepaDa0Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaa dYgaa0Gaey4kIipakiaaiUfacqGHsislcaWGqbWaaSbaaSqaaiaaig daaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG2bGaaGik aiaaicdacaaISaGaamiDaiaaiMcacaWGHbGaaGikaiaaicdacaaISa GaamiDaiaaiMcacqGHRaWkaeaacqGHRaWkcaWGqbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG2bGaaG ikaiaadYgacaaISaGaamiDaiaaiMcacaWGHbGaaGikaiaadYgacaaI SaGaamiDaiaaiMcacaaIDbGaamyDaiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaamizaiaadIhacaWGKbGaamiDaiaai6caaaGaaGikaiaa ikdacaaIZaGaaGykaaaa@1B76@

Из равенства (23) вытекает неравенство и, если учесть условие теоремы α 11 a(0,0) ξ 1 2 +2 α 12 a(0,0) ξ 1 ξ 2 α 22 a(l,0) ξ 2 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaigdacaaIXaaabeaakiaadggacaaIOaGaaGimaiaaiYca caaIWaGaaGykaiabe67a4naaDaaaleaacaaIXaaabaGaaGOmaaaaki abgUcaRiaaikdacqaHXoqydaWgaaWcbaGaaGymaiaaikdaaeqaaOGa amyyaiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGaeqOVdG3aaSbaaS qaaiaaigdaaeqaaOGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaeyOe I0IaeqySde2aaSbaaSqaaiaaikdacaaIYaaabeaakiaadggacaaIOa GaamiBaiaaiYcacaaIWaGaaGykaiabe67a4naaDaaaleaacaaIYaaa baGaaGOmaaaakiabgwMiZkaaicdaaaa@60D8@ , получим:

                                      0 l [ u 2 (x,τ)+a(x,0) v x 2 (x,0)]dx 0 τ 0 l a t v x 2 dxdt + 0 τ α 11 a t (0,t) v 2 (0,t)dt + + 0 τ α 22 a t (l,t) v 2 (l,t)dt +2 0 τ α 12 a t (0,t)v(0,t)v(l,t)dt + +2 0 τ 0 l [ P 1 (x,t)v(0,t)a(0,t)+ P 2 (x,t)v(l,t)a(l,t)]u(x,t)dxdt . (24) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiUfa caWG1bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaeq iXdqNaaGykaiabgUcaRiaadggacaaIOaGaamiEaiaaiYcacaaIWaGa aGykaiaadAhadaqhaaWcbaGaamiEaaqaaiaaikdaaaGccaaIOaGaam iEaiaaiYcacaaIWaGaaGykaiaai2facaWGKbGaamiEaiabgsMiJoaa emaabaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcda WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGHbWaaSba aSqaaiaadshaaeqaaOGaamODamaaDaaaleaacaWG4baabaGaaGOmaa aakiaadsgacaWG4bGaamizaiaadshaaiaawEa7caGLiWoacqGHRaWk daabdaqaamaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aO GaeqySde2aaSbaaSqaaiaaigdacaaIXaaabeaakiaadggadaWgaaWc baGaamiDaaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaadA hadaahaaWcbeqaaiaaikdaaaGccaaIOaGaaGimaiaaiYcacaWG0bGa aGykaiaadsgacaWG0baacaGLhWUaayjcSdGaey4kaScabaGaey4kaS YaaqWaaeaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipa kiabeg7aHnaaBaaaleaacaaIYaGaaGOmaaqabaGccaWGHbWaaSbaaS qaaiaadshaaeqaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcacaWG 2bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadYgacaaISaGaamiDai aaiMcacaWGKbGaamiDaaGaay5bSlaawIa7aiabgUcaRiaaikdadaab daqaamaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaeq ySde2aaSbaaSqaaiaaigdacaaIYaaabeaakiaadggadaWgaaWcbaGa amiDaaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaadAhaca aIOaGaaGimaiaaiYcacaWG0bGaaGykaiaadAhacaaIOaGaamiBaiaa iYcacaWG0bGaaGykaiaadsgacaWG0baacaGLhWUaayjcSdGaey4kaS cabaGaey4kaSIaaGOmamaaemaabaWaa8qmaeqaleaacaaIWaaabaGa eqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaani abgUIiYdGccaaIBbGaeyOeI0IaamiuamaaBaaaleaacaaIXaaabeaa kiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamODaiaaiIcacaaIWa GaaGilaiaadshacaaIPaGaamyyaiaaiIcacaaIWaGaaGilaiaadsha caaIPaGaey4kaSIaamiuamaaBaaaleaacaaIYaaabeaakiaaiIcaca WG4bGaaGilaiaadshacaaIPaGaamODaiaaiIcacaWGSbGaaGilaiaa dshacaaIPaGaamyyaiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaaG yxaiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG 4bGaamizaiaadshaaiaawEa7caGLiWoacaaIUaaaaiaaiIcacaaIYa GaaGinaiaaiMcaaaa@F8EE@

Обратимся теперь к правой части (24) Коши, Коши MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  Буняковского и

                                                    v 2 ( x i ,t)2l 0 l v x 2 (x,t)dx+ 2 l 0 l v 2 (x,t)dx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaCa aaleqabaGaaGOmaaaakiaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqa aOGaaGilaiaadshacaaIPaGaeyizImQaaGOmaiaadYgadaWdXaqabS qaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWG2bWaa0baaSqaaiaa dIhaaeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca WGKbGaamiEaiabgUcaRmaalaaabaGaaGOmaaqaaiaadYgaaaWaa8qm aeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamODamaaCaaale qabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamiz aiaadIhacaaISaaaaa@5E66@

вывод которой показан в [3, с. 107]. Учитывая сказанное выше, получим оценки для таких слагаемых правой части неравенства (24):

                                     0 τ α 11 a t (0,t) v 2 (0,t)dt 0 τ α 11 a t (0,t) v 2 (0,t) dt 0 τ | α 11 || a t (0,t)| v 2 (0,t)dt A 1 0 τ v 2 (0,t)dt2l A 1 0 τ 0 l v x 2 (x,t)dxdt+ 2 A 1 l 0 τ 0 l v 2 (x,t)dxdt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaaemaabaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIi YdGccqaHXoqydaWgaaWcbaGaaGymaiaaigdaaeqaaOGaamyyamaaBa aaleaacaWG0baabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGa amODamaaCaaaleqabaGaaGOmaaaakiaaiIcacaaIWaGaaGilaiaads hacaaIPaGaamizaiaadshaaiaawEa7caGLiWoacqGHKjYOdaWdXaqa bSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakmaaemaabaGaeqySde 2aaSbaaSqaaiaaigdacaaIXaaabeaakiaadggadaWgaaWcbaGaamiD aaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaadAhadaahaa WcbeqaaiaaikdaaaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaaGa ay5bSlaawIa7aiaadsgacaWG0bGaeyizIm6aa8qmaeqaleaacaaIWa aabaGaeqiXdqhaniabgUIiYdGccaaI8bGaeqySde2aaSbaaSqaaiaa igdacaaIXaaabeaakiaaiYhacaaI8bGaamyyamaaBaaaleaacaWG0b aabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaaGiFaiaadAha daahaaWcbeqaaiaaikdaaaGccaaIOaGaaGimaiaaiYcacaWG0bGaaG ykaiaadsgacaWG0bGaeyizImkabaGaeyizImQaamyqamaaBaaaleaa caaIXaaabeaakmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRi I8aOGaamODamaaCaaaleqabaGaaGOmaaaakiaaiIcacaaIWaGaaGil aiaadshacaaIPaGaamizaiaadshacqGHKjYOcaaIYaGaamiBaiaadg eadaWgaaWcbaGaaGymaaqabaGcdaWdXaqabSqaaiaaicdaaeaacqaH epaDa0Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey 4kIipakiaadAhadaqhaaWcbaGaamiEaaqaaiaaikdaaaGccaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaamizaiaadshacq GHRaWkdaWcaaqaaiaaikdacaWGbbWaaSbaaSqaaiaaigdaaeqaaaGc baGaamiBaaaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIi pakmaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadAha daahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiaadsgacaWG4bGaamizaiaadshacaaISaaaaaaa@C79D@

где A 1 := b 1 a 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIXaaabeaakiaaiQdacaaI9aGaamOyamaaBaaaleaacaaI XaaabeaakiabgwSixlaadggadaWgaaWcbaGaaGOmaaqabaGccaaISa aaaa@41F9@

 

                                          2 0 τ α 12 a t (0,t)v(0,t)v(l,t)dt 2 0 τ α 12 a t (0,t)v(0,t)v(l,t) dt 2 0 τ | α 12 || a t (0,t)||v(0,t)||v(l,t)|dt A 2 0 τ [ v 2 (0,t)+ v 2 (l,t)]dt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaaikdadaabdaqaamaapedabeWcbaGaaGimaaqaaiabes8a0bqd cqGHRiI8aOGaeqySde2aaSbaaSqaaiaaigdacaaIYaaabeaakiaadg gadaWgaaWcbaGaamiDaaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGa aGykaiaadAhacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaadAhaca aIOaGaamiBaiaaiYcacaWG0bGaaGykaiaadsgacaWG0baacaGLhWUa ayjcSdGaeyizImQaaGOmamaapedabeWcbaGaaGimaaqaaiabes8a0b qdcqGHRiI8aOWaaqWaaeaacqaHXoqydaWgaaWcbaGaaGymaiaaikda aeqaaOGaamyyamaaBaaaleaacaWG0baabeaakiaaiIcacaaIWaGaaG ilaiaadshacaaIPaGaamODaiaaiIcacaaIWaGaaGilaiaadshacaaI PaGaamODaiaaiIcacaWGSbGaaGilaiaadshacaaIPaaacaGLhWUaay jcSdGaamizaiaadshacqGHKjYOaeaacqGHKjYOcaaIYaWaa8qmaeqa leaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaaI8bGaeqySde2aaS baaSqaaiaaigdacaaIYaaabeaakiaaiYhacaaI8bGaamyyamaaBaaa leaacaWG0baabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaaG iFaiaaiYhacaWG2bGaaGikaiaaicdacaaISaGaamiDaiaaiMcacaaI 8bGaaGiFaiaadAhacaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiaaiY hacaWGKbGaamiDaiabgsMiJkaadgeadaWgaaWcbaGaaGOmaaqabaGc daWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakiaaiUfaca WG2bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaaicdacaaISaGaamiD aiaaiMcacqGHRaWkcaWG2bWaaWbaaSqabeaacaaIYaaaaOGaaGikai aadYgacaaISaGaamiDaiaaiMcacaaIDbGaamizaiaadshacaaISaaa aaaa@B397@

где A 2 := b 2 a 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIYaaabeaakiaaiQdacaaI9aGaamOyamaaBaaaleaacaaI YaaabeaakiabgwSixlaadggadaWgaaWcbaGaaGOmaaqabaGccaaISa aaaa@41FB@

 

                                      0 τ α 22 a t (l,t) v 2 (l,t)dt 0 τ α 22 a t (l,t) v 2 (l,t) dt 0 τ | α 22 || a t (l,t)| v 2 (l,t)dt A 3 0 τ v 2 (l,t)dt2l A 3 0 τ 0 l v x 2 (x,t)dxdt+ 2 A 3 l 0 τ 0 l v 2 (x,t)dxdt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaaemaabaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIi YdGccqaHXoqydaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaamyyamaaBa aaleaacaWG0baabeaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGa amODamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWGSbGaaGilaiaads hacaaIPaGaamizaiaadshaaiaawEa7caGLiWoacqGHKjYOdaWdXaqa bSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakmaaemaabaGaeqySde 2aaSbaaSqaaiaaikdacaaIYaaabeaakiaadggadaWgaaWcbaGaamiD aaqabaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiaadAhadaahaa WcbeqaaiaaikdaaaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykaaGa ay5bSlaawIa7aiaadsgacaWG0bGaeyizIm6aa8qmaeqaleaacaaIWa aabaGaeqiXdqhaniabgUIiYdGccaaI8bGaeqySde2aaSbaaSqaaiaa ikdacaaIYaaabeaakiaaiYhacaaI8bGaamyyamaaBaaaleaacaWG0b aabeaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaaGiFaiaadAha daahaaWcbeqaaiaaikdaaaGccaaIOaGaamiBaiaaiYcacaWG0bGaaG ykaiaadsgacaWG0bGaeyizImkabaGaeyizImQaamyqamaaBaaaleaa caaIZaaabeaakmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRi I8aOGaamODamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWGSbGaaGil aiaadshacaaIPaGaamizaiaadshacqGHKjYOcaaIYaGaamiBaiaadg eadaWgaaWcbaGaaG4maaqabaGcdaWdXaqabSqaaiaaicdaaeaacqaH epaDa0Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey 4kIipakiaadAhadaqhaaWcbaGaamiEaaqaaiaaikdaaaGccaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaamizaiaadshacq GHRaWkdaWcaaqaaiaaikdacaWGbbWaaSbaaSqaaiaaiodaaeqaaaGc baGaamiBaaaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIi pakmaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadAha daahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiaadsgacaWG4bGaamizaiaadshacaaISaaaaaaa@C92A@

где A 3 := c 2 a 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIZaaabeaakiaaiQdacaaI9aGaam4yamaaBaaaleaacaaI YaaabeaakiabgwSixlaadggadaWgaaWcbaGaaGOmaaqabaGccaaISa aaaa@41FD@

 

                               2 0 τ 0 l [ P 1 (x,t)v(0,t)a(0,t)+ P 2 (x,t)v(l,t)a(l,t)]u(x,t)dxdt 2 0 τ 0 l | P 1 (x,t)v(0,t)a(0,t)u(x,t)|dxdt+2 0 τ 0 l | P 2 (x,t)v(l,t)a(l,t)u(x,t)|dxdt 2 0 τ 0 l | P 1 (x,t)||v(0,t)||a(0,t)||u(x,t)|dxdt+2 0 τ 0 l | P 2 (x,t)||v(l,t)||a(l,t)||u(x,t)|dxdt D 1 l 0 τ v 2 (l,t)dt+ D 2 l 0 τ v 2 (0,t)dt+( D 1 + D 2 ) 0 τ 0 l u 2 (x,t)dxdt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaaGOmamaaemaabaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqha niabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYd GccaaIBbGaeyOeI0IaamiuamaaBaaaleaacaaIXaaabeaakiaaiIca caWG4bGaaGilaiaadshacaaIPaGaamODaiaaiIcacaaIWaGaaGilai aadshacaaIPaGaamyyaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGa ey4kaSIaamiuamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaamODaiaaiIcacaWGSbGaaGilaiaadshacaaI PaGaamyyaiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaaGyxaiaadw hacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaamiz aiaadshaaiaawEa7caGLiWoacqGHKjYOaeaacqGHKjYOcaaIYaWaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqa aiaaicdaaeaacaWGSbaaniabgUIiYdGccaaI8bGaamiuamaaBaaale aacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamOD aiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamyyaiaaiIcacaaIWa GaaGilaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaaGiFaiaadsgacaWG4bGaamizaiaadshacqGHRaWkcaaIYa Waa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqa bSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaaI8bGaamiuamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa amODaiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaamyyaiaaiIcaca WGSbGaaGilaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGaaGilaiaa dshacaaIPaGaaGiFaiaadsgacaWG4bGaamizaiaadshacqGHKjYOae aacqGHKjYOcaaIYaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniab gUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGcca aI8bGaamiuamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaaGiFaiaaiYhacaWG2bGaaGikaiaaicdacaaISa GaamiDaiaaiMcacaaI8bGaaGiFaiaadggacaaIOaGaaGimaiaaiYca caWG0bGaaGykaiaaiYhacaaI8bGaamyDaiaaiIcacaWG4bGaaGilai aadshacaaIPaGaaGiFaiaadsgacaWG4bGaamizaiaadshacqGHRaWk caaIYaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcda WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaaI8bGaamiu amaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaaGiFaiaaiYhacaWG2bGaaGikaiaadYgacaaISaGaamiDaiaa iMcacaaI8bGaaGiFaiaadggacaaIOaGaamiBaiaaiYcacaWG0bGaaG ykaiaaiYhacaaI8bGaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaaGiFaiaadsgacaWG4bGaamizaiaadshacqGHKjYOaeaacqGHKj YOcaWGebWaaSbaaSqaaiaaigdaaeqaaOGaamiBamaapedabeWcbaGa aGimaaqaaiabes8a0bqdcqGHRiI8aOGaamODamaaCaaaleqabaGaaG OmaaaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaamizaiaadsha cqGHRaWkcaWGebWaaSbaaSqaaiaaikdaaeqaaOGaamiBamaapedabe WcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaamODamaaCaaaleqa baGaaGOmaaaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamizai aadshacqGHRaWkcaaIOaGaamiramaaBaaaleaacaaIXaaabeaakiab gUcaRiaadseadaWgaaWcbaGaaGOmaaqabaGccaaIPaWaa8qmaeqale aacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicda aeaacaWGSbaaniabgUIiYdGccaWG1bWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiaadsga caWG0bGaaGilaaaaaaa@4FF7@

где D 1 := d 1 a 1 , D 2 := d 2 a 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaaabeaakiaaiQdacaaI9aGaamizamaaBaaaleaacaaI XaaabeaakiabgwSixlaadggadaWgaaWcbaGaaGymaaqabaGccaaISa GaamiramaaBaaaleaacaaIYaaabeaakiaaiQdacaaI9aGaamizamaa BaaaleaacaaIYaaabeaakiabgwSixlaadggadaWgaaWcbaGaaGymaa qabaGccaaIUaaaaa@4BF7@

Преобразуем (24), учитывая оценки, написанные выше:

                                      0 l [ u 2 (x,τ)+a(x,0) v x 2 (x,0)]dx 0 τ 0 l a t v x 2 dxdt +2l A 1 0 τ 0 l v x 2 (x,t)dxdt+ + 2 A 1 l 0 τ 0 l v 2 (x,t)dxdt+ A 2 0 τ [ v 2 (0,t)+ v 2 (l,t)]dt+2l A 3 0 τ 0 l v x 2 (x,t)dxdt+ + 2 A 3 l 0 τ 0 l v 2 (x,t)dxdt+ D 1 l 0 τ v 2 (l,t)dt+ D 2 l 0 τ v 2 (0,t)dt+ +( D 1 + D 2 ) 0 τ 0 l u 2 (x,t)dxdt. (25) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4w aiaadwhadaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacq aHepaDcaaIPaGaey4kaSIaamyyaiaaiIcacaWG4bGaaGilaiaaicda caaIPaGaamODamaaDaaaleaacaWG4baabaGaaGOmaaaakiaaiIcaca WG4bGaaGilaiaaicdacaaIPaGaaGyxaiaadsgacaWG4bGaeyizIm6a aqWaaeaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakm aapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadggadaWg aaWcbaGaamiDaaqabaGccaWG2bWaa0baaSqaaiaadIhaaeaacaaIYa aaaOGaamizaiaadIhacaWGKbGaamiDaaGaay5bSlaawIa7aiabgUca RiaaikdacaWGSbGaamyqamaaBaaaleaacaaIXaaabeaakmaapedabe WcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaacaaI WaaabaGaamiBaaqdcqGHRiI8aOGaamODamaaDaaaleaacaWG4baaba GaaGOmaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaa dIhacaWGKbGaamiDaiabgUcaRaqaaiabgUcaRmaalaaabaGaaGOmai aadgeadaWgaaWcbaGaaGymaaqabaaakeaacaWGSbaaamaapedabeWc baGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaacaaIWa aabaGaamiBaaqdcqGHRiI8aOGaamODamaaCaaaleqabaGaaGOmaaaa kiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhacaWGKb GaamiDaiabgUcaRiaadgeadaWgaaWcbaGaaGOmaaqabaGcdaWdXaqa bSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakiaaiUfacaWG2bWaaW baaSqabeaacaaIYaaaaOGaaGikaiaaicdacaaISaGaamiDaiaaiMca cqGHRaWkcaWG2bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadYgaca aISaGaamiDaiaaiMcacaaIDbGaamizaiaadshacqGHRaWkcaaIYaGa amiBaiaadgeadaWgaaWcbaGaaG4maaqabaGcdaWdXaqabSqaaiaaic daaeaacqaHepaDa0Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaa dYgaa0Gaey4kIipakiaadAhadaqhaaWcbaGaamiEaaqaaiaaikdaaa GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaamiz aiaadshacqGHRaWkaeaacqGHRaWkdaWcaaqaaiaaikdacaWGbbWaaS baaSqaaiaaiodaaeqaaaGcbaGaamiBaaaadaWdXaqabSqaaiaaicda aeaacqaHepaDa0Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaadY gaa0Gaey4kIipakiaadAhadaahaaWcbeqaaiaaikdaaaGccaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaamizaiaadshacq GHRaWkcaWGebWaaSbaaSqaaiaaigdaaeqaaOGaamiBamaapedabeWc baGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaamODamaaCaaaleqaba GaaGOmaaaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaamizaiaa dshacqGHRaWkcaWGebWaaSbaaSqaaiaaikdaaeqaaOGaamiBamaape dabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaamODamaaCaaa leqabaGaaGOmaaaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaam izaiaadshacqGHRaWkaeaacqGHRaWkcaaIOaGaamiramaaBaaaleaa caaIXaaabeaakiabgUcaRiaadseadaWgaaWcbaGaaGOmaaqabaGcca aIPaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWd XaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWG1bWaaWbaaS qabeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG KbGaamiEaiaadsgacaWG0bGaaGOlaaaacaaIOaGaaGOmaiaaiwdaca aIPaaaaa@1C49@

Введем некоторые обозначения:

                                     C 1 =2l( A 1 + A 3 ), C 2 = A 2 + D 2 l, C 3 = A 2 + D 1 l, C 4 = D 1 + D 2 , C 5 = 2 l ( A 1 + A 3 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIXaaabeaakiaai2dacaaIYaGaamiBaiaaiIcacaWGbbWa aSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyqamaaBaaaleaacaaIZa aabeaakiaaiMcacaaISaGaam4qamaaBaaaleaacaaIYaaabeaakiaa i2dacaWGbbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiramaaBa aaleaacaaIYaaabeaakiaadYgacaaISaGaam4qamaaBaaaleaacaaI Zaaabeaakiaai2dacaWGbbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaS IaamiramaaBaaaleaacaaIXaaabeaakiaadYgacaaISaGaam4qamaa BaaaleaacaaI0aaabeaakiaai2dacaWGebWaaSbaaSqaaiaaigdaae qaaOGaey4kaSIaamiramaaBaaaleaacaaIYaaabeaakiaaiYcacaWG dbWaaSbaaSqaaiaaiwdaaeqaaOGaaGypamaalaaabaGaaGOmaaqaai aadYgaaaGaaGikaiaadgeadaWgaaWcbaGaaGymaaqabaGccqGHRaWk caWGbbWaaSbaaSqaaiaaiodaaeqaaOGaaGykaiaai6caaaa@65DB@

Преобразуем (25):

                                        0 l [ u 2 (x,τ)+a(x,0) v x 2 (x,0)]dx 0 τ 0 l a t v x 2 dxdt + C 1 0 τ 0 l v x 2 (x,t)dxdt+ + C 2 0 τ v 2 (0,t)dt+ C 3 0 τ v 2 (l,t)dt+ C 4 0 τ 0 l u 2 (x,t)dxdt+ + C 5 0 τ 0 l v 2 (x,t)dxdt. (26) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiUfa caWG1bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaeq iXdqNaaGykaiabgUcaRiaadggacaaIOaGaamiEaiaaiYcacaaIWaGa aGykaiaadAhadaqhaaWcbaGaamiEaaqaaiaaikdaaaGccaaIOaGaam iEaiaaiYcacaaIWaGaaGykaiaai2facaWGKbGaamiEaiabgsMiJoaa emaabaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcda WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGHbWaaSba aSqaaiaadshaaeqaaOGaamODamaaDaaaleaacaWG4baabaGaaGOmaa aakiaadsgacaWG4bGaamizaiaadshaaiaawEa7caGLiWoacqGHRaWk caWGdbWaaSbaaSqaaiaaigdaaeqaaOWaa8qmaeqaleaacaaIWaaaba GaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaa niabgUIiYdGccaWG2bWaa0baaSqaaiaadIhaaeaacaaIYaaaaOGaaG ikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiaadsgacaWG 0bGaey4kaScabaGaey4kaSIaam4qamaaBaaaleaacaaIYaaabeaakm aapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaamODamaa CaaaleqabaGaaGOmaaaakiaaiIcacaaIWaGaaGilaiaadshacaaIPa GaamizaiaadshacqGHRaWkcaWGdbWaaSbaaSqaaiaaiodaaeqaaOWa a8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG2bWaaW baaSqabeaacaaIYaaaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMca caWGKbGaamiDaiabgUcaRiaadoeadaWgaaWcbaGaaGinaaqabaGcda WdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakmaapedabeWc baGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadwhadaahaaWcbeqaai aaikdaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG 4bGaamizaiaadshacqGHRaWkaeaacqGHRaWkcaWGdbWaaSbaaSqaai aaiwdaaeqaaOWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIi YdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWG2b WaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaamiDaiaa iMcacaWGKbGaamiEaiaadsgacaWG0bGaaGOlaaaacaaIOaGaaGOmai aaiAdacaaIPaaaaa@CC47@

Используя неравенство, полученное в [2], получим:

                                                0 τ v 2 (0,t)dt2l 0 τ 0 l v x 2 (x,t)dxdt+ 2 l 0 τ 0 l v 2 (x,t)dxdt, 0 τ v 2 (l,t)dt2l 0 τ 0 l v x 2 (x,t)dxdt+ 2 l 0 τ 0 l v 2 (x,t)dxdt, 0 τ 0 l v 2 (x,t)dxdt τ 2 0 τ 0 l u 2 (x,t)dxdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaamaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaamOD amaaCaaaleqabaGaaGOmaaaakiaaiIcacaaIWaGaaGilaiaadshaca aIPaGaamizaiaadshacqGHKjYOcaaIYaGaamiBamaapedabeWcbaGa aGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaacaaIWaaaba GaamiBaaqdcqGHRiI8aOGaamODamaaDaaaleaacaWG4baabaGaaGOm aaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhaca WGKbGaamiDaiabgUcaRmaalaaabaGaaGOmaaqaaiaadYgaaaWaa8qm aeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaai aaicdaaeaacaWGSbaaniabgUIiYdGccaWG2bWaaWbaaSqabeaacaaI YaaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEai aadsgacaWG0bGaaGilaaqaamaapedabeWcbaGaaGimaaqaaiabes8a 0bqdcqGHRiI8aOGaamODamaaCaaaleqabaGaaGOmaaaakiaaiIcaca WGSbGaaGilaiaadshacaaIPaGaamizaiaadshacqGHKjYOcaaIYaGa amiBamaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8 qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamODamaaDaaa leaacaWG4baabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaamizaiaadIhacaWGKbGaamiDaiabgUcaRmaalaaabaGaaGOm aaqaaiaadYgaaaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgU IiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWG 2bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaamiDai aaiMcacaWGKbGaamiEaiaadsgacaWG0bGaaGilaaqaamaapedabeWc baGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaacaaIWa aabaGaamiBaaqdcqGHRiI8aOGaamODamaaCaaaleqabaGaaGOmaaaa kiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhacaWGKb GaamiDaiabgsMiJkabes8a0naaCaaaleqabaGaaGOmaaaakmaapeda beWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaaca aIWaaabaGaamiBaaqdcqGHRiI8aOGaamyDamaaCaaaleqabaGaaGOm aaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhaca WGKbGaamiDaiaai6caaaaaaa@D391@

Учитывая оценки, написанные выше, получим:

                                      0 l [ u 2 (x,τ)+a(x,0) v x 2 (x,0)]dx 0 τ 0 l ( a 2 + B 1 ) v x 2 (x,t)+ B 2 u 2 (x,t) dxdt,(27) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4waiaadwhadaahaaWc beqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacqaHepaDcaaIPaGaey 4kaSIaamyyaiaaiIcacaWG4bGaaGilaiaaicdacaaIPaGaamODamaa DaaaleaacaWG4baabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiaaic dacaaIPaGaaGyxaiaadsgacaWG4bGaeyizIm6aa8qmaeqaleaacaaI WaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaaca WGSbaaniabgUIiYdGcdaWadaqaaiaaiIcacaWGHbWaaSbaaSqaaiaa ikdaaeqaaOGaey4kaSIaamOqamaaBaaaleaacaaIXaaabeaakiaaiM cacaWG2bWaa0baaSqaaiaadIhaaeaacaaIYaaaaOGaaGikaiaadIha caaISaGaamiDaiaaiMcacqGHRaWkcaWGcbWaaSbaaSqaaiaaikdaae qaaOGaamyDamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG4bGaaGil aiaadshacaaIPaaacaGLBbGaayzxaaGaamizaiaadIhacaWGKbGaam iDaiaaiYcacaaIOaGaaGOmaiaaiEdacaaIPaaaaa@7BBE@

где

                                           B 1 := C 1 +2l( C 2 + C 3 ), B 2 := max [0,T] { 2 l ( C 2 + C 3 ) τ 2 + C 4 + C 5 τ 2 }. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaaIXaaabeaakiaaiQdacaaI9aGaam4qamaaBaaaleaacaaI XaaabeaakiabgUcaRiaaikdacaWGSbGaaGikaiaadoeadaWgaaWcba GaaGOmaaqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiaaiodaaeqaaOGa aGykaiaaiYcacaaIGaGaamOqamaaBaaaleaacaaIYaaabeaakiaaiQ dacaaI9aWaaybuaeqaleaacaaIBbGaaGimaiaaiYcacaWGubGaaGyx aaqabOqaaiGac2gacaGGHbGaaiiEaaaacaaI7bWaaSaaaeaacaaIYa aabaGaamiBaaaacaaIOaGaam4qamaaBaaaleaacaaIYaaabeaakiab gUcaRiaadoeadaWgaaWcbaGaaG4maaqabaGccaaIPaGaeqiXdq3aaW baaSqabeaacaaIYaaaaOGaey4kaSIaam4qamaaBaaaleaacaaI0aaa beaakiabgUcaRiaadoeadaWgaaWcbaGaaGynaaqabaGccqaHepaDda ahaaWcbeqaaiaaikdaaaGccaaI9bGaaGOlaaaa@6649@

Теперь введем функцию w(x,t)= 0 t u x dη MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypamaapedabeWcbaGaaGim aaqaaiaadshaa0Gaey4kIipakiaadwhadaWgaaWcbaGaamiEaaqaba GccaWGKbGaeq4TdGgaaa@4684@ . Тогда, используя преставления функции v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaaaa@3902@ , получим

                                           v x 2 (x,0)= w 2 (x,τ), v x (x,0)=w(x,τ), v x (x,t)=w(x,t)w(x,τ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaDa aaleaacaWG4baabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiaaicda caaIPaGaaGypaiaadEhadaahaaWcbeqaaiaaikdaaaGccaaIOaGaam iEaiaaiYcacqaHepaDcaaIPaGaaGilaiaaiccacaWG2bWaaSbaaSqa aiaadIhaaeqaaOGaaGikaiaadIhacaaISaGaaGimaiaaiMcacaaI9a GaeyOeI0Iaam4DaiaaiIcacaWG4bGaaGilaiabes8a0jaaiMcacaaI SaGaaGiiaiaadAhadaWgaaWcbaGaamiEaaqabaGccaaIOaGaamiEai aaiYcacaWG0bGaaGykaiaai2dacaWG3bGaaGikaiaadIhacaaISaGa amiDaiaaiMcacqGHsislcaWG3bGaaGikaiaadIhacaaISaGaeqiXdq NaaGykaiaai6caaaa@6A35@

Тогда в (27) v x 2 (x,t)2 w 2 (x,t)+2 w 2 (x,τ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaDa aaleaacaWG4baabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaeyizImQaaGOmaiaadEhadaahaaWcbeqaaiaaikdaaaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRiaaikdacaWG3bWa aWbaaSqabeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaeqiXdqNaaG ykaiaai6caaaa@5096@  Подставляя это неравенство, получим:

                                0 l [ u 2 (x,τ)+a(x,0) w 2 (x,τ)]dx 0 τ 0 l 2( a 2 + B 1 )( w 2 (x,t)+ w 2 (x,τ))+ B 2 u 2 (x,t) dxdt.(28) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4waiaadwhadaahaaWc beqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacqaHepaDcaaIPaGaey 4kaSIaamyyaiaaiIcacaWG4bGaaGilaiaaicdacaaIPaGaam4Damaa CaaaleqabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiabes8a0jaaiM cacaaIDbGaamizaiaadIhacqGHKjYOdaWdXaqabSqaaiaaicdaaeaa cqaHepaDa0Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaadYgaa0 Gaey4kIipakmaadmaabaGaaGOmaiaaiIcacaWGHbWaaSbaaSqaaiaa ikdaaeqaaOGaey4kaSIaamOqamaaBaaaleaacaaIXaaabeaakiaaiM cacaaIOaGaam4DamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaey4kaSIaam4DamaaCaaaleqabaGaaGOmaa aakiaaiIcacaWG4bGaaGilaiabes8a0jaaiMcacaaIPaGaey4kaSIa amOqamaaBaaaleaacaaIYaaabeaakiaadwhadaahaaWcbeqaaiaaik daaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaGaay5waiaaw2fa aiaadsgacaWG4bGaamizaiaadshacaaIUaGaaGikaiaaikdacaaI4a GaaGykaaaa@84A3@

Заметим, что w 2 (x,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaCa aaleqabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiabes8a0jaaiMca aaa@3ED3@  не зависит от t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  и a(x,t) a 0 >0 x,t Q ¯ T . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaeyyzImRaamyyamaaBaaaleaa caaIWaaabeaakiaai6dacaaIWaGaaGiiaiaaiccacqGHaiIicaWG4b GaaGilaiaadshacqGHiiIZdaqdaaqaaiaadgfaaaWaaSbaaSqaaiaa dsfaaeqaaOGaaGOlaaaa@4B1E@  Тогда

                                      null

Выберем τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@39CC@  так, чтобы a 0 2τ( a 2 + B 1 )>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIWaaabeaakiabgkHiTiaaikdacqaHepaDcaaIOaGaamyy amaaBaaaleaacaaIYaaabeaakiabgUcaRiaadkeadaWgaaWcbaGaaG ymaaqabaGccaaIPaGaaGOpaiaaicdacaaIUaaaaa@455C@  Тoгда последнее слагаемое в (29) можно перенести в левую часть:

                                       0 l [ u 2 (x,τ)+ν w 2 (x,τ)]dx 0 τ 0 l 2( a 2 + B 1 ) w 2 (x,t)+ B 2 u 2 (x,t) dxdt,(30) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4waiaadwhadaahaaWc beqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacqaHepaDcaaIPaGaey 4kaSIaeqyVd4Maam4DamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG 4bGaaGilaiabes8a0jaaiMcacaaIDbGaamizaiaadIhacqGHKjYOda WdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakmaapedabeWc baGaaGimaaqaaiaadYgaa0Gaey4kIipakmaadmaabaGaaGOmaiaaiI cacaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamOqamaaBaaa leaacaaIXaaabeaakiaaiMcacaWG3bWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHRaWkcaWGcbWaaSba aSqaaiaaikdaaeqaaOGaamyDamaaCaaaleqabaGaaGOmaaaakiaaiI cacaWG4bGaaGilaiaadshacaaIPaaacaGLBbGaayzxaaGaamizaiaa dIhacaWGKbGaamiDaiaaiYcacaaIOaGaaG4maiaaicdacaaIPaaaaa@7887@

где ν= a 0 2τ( a 2 + B 1 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaadggadaWgaaWcbaGaaGimaaqabaGccqGHsislcaaIYaGaeqiX dqNaaGikaiaadggadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGcb WaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaai6caaaa@4659@  Выберем в (30) m=min{1;ν} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaai2 dacaWGTbGaamyAaiaad6gacaaI7bGaaGymaiaaiUdacqaH9oGBcaaI 9baaaa@41D7@  и M=max{2( a 2 + B 1 ); B 2 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaai2 dacaWGTbGaamyyaiaadIhacaaI7bGaaGOmaiaaiIcacaWGHbWaaSba aSqaaiaaikdaaeqaaOGaey4kaSIaamOqamaaBaaaleaacaaIXaaabe aakiaaiMcacaaI7aGaamOqamaaBaaaleaacaaIYaaabeaakiaai2ha caaISaaaaa@4848@  получим

                                           m 0 l [ u 2 (x,τ)+ w 2 (x,τ)]dxM 0 τ 0 l w 2 (x,t)+ u 2 (x,t) dxdt.(31) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaape dabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiUfacaWG1bWa aWbaaSqabeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaeqiXdqNaaG ykaiabgUcaRiaadEhadaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiE aiaaiYcacqaHepaDcaaIPaGaaGyxaiaadsgacaWG4bGaeyizImQaam ytamaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qm aeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOWaamWaaeaacaWG3b WaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaamiDaiaa iMcacqGHRaWkcaWG1bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadI hacaaISaGaamiDaiaaiMcaaiaawUfacaGLDbaacaWGKbGaamiEaiaa dsgacaWG0bGaaGOlaiaaiIcacaaIZaGaaGymaiaaiMcaaaa@704A@

Применив к последнему неравенству лемму Гронуолла, получим u(x,t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypaiaaicdaaaa@3E93@  в [0,τ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeqiXdqNaaGyxaiaaiYcaaaa@3DBE@  где τ< a 0 2( a 2 + B 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaaG ipamaalaaabaGaamyyamaaBaaaleaacaaIWaaabeaaaOqaaiaaikda caaIOaGaamyyamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadkeada WgaaWcbaGaaGymaaqabaGccaaIPaaaaaaa@430B@ . Так же, как и в [1, с. 212], повторяя рассуждения для t[τ, τ 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacqaHepaDcaaISaGaeqiXdq3aaSbaaSqaaiaaigdaaeqa aOGaaGyxaaaa@4181@ , убедимся, что u(x,t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypaiaaicdaaaa@3E93@  на этом промежутке (τ τ 1 <T). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabes 8a0jabgsMiJkabes8a0naaBaaaleaacaaIXaaabeaakiaaiYdacaWG ubGaaGykaiaai6caaaa@41F3@  И так в конечное число шагов докажем обращение в нуль для всех t[0,T]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiaadsfacaaIDbGaaGOlaaaa@3F51@

Таким образом, доказано утверждение о том, что не может существовать более одного решения поставленной задачи. 

×

About the authors

Y. S. Buntova

Samara National Research University

Author for correspondence.
Email: ynbuntova@gmail.com
ORCID iD: 0009-0003-7786-8019

postgraduate student of the Department of Differential Equations and Control Theory

Russian Federation, Samara

References

  1. Ladyzhenskaya O.A. Boundary value problems of mathematical physics. Moscow: Nauka, 1973, 407 p. Available at: https://djvu.online/file/Rh97R3cVXNcZE?ysclid=lntxmubmb390280080. (In Russ.)
  2. Pul’kina L.S. Boundary-value problems for a hyperbolic equation with nonlocal conditions of the I and II kind. Russian Mathematics, 2012, vol. 56, issue 4, pp. 62-–69. DOI: https://doi.org/10.3103/S1066369X12040081. (In
  3. English; original in Russian)
  4. Pul’kina L.S. Problems with non-classical conditions for hyperbolic equations: monograph. Samara: Izdatel’stvo "Samarskii universitet" , 2012, 194 p. (In Russ.)
  5. Dmitriev V.B. A non-local problem with integral conditions for a wave equation. Vestnik of Samara State University. Natural Science Series, 2006, no. 2 (42), pp. 15–27. Available at: http://vestniksamgu.ssau.ru/est/2006web2/math/200620002.pdf. (In Russ.)
  6. Cannon J.R. The solution of the heat equation subject to the specification of energy. Quarterly of Applied Mathematics, 1963, vol. 21, pp. 155–160. DOI: https://doi.org/10.1090/QAM/160437.
  7. Ionkin N.I. The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition. Differential Equations, 1977, vol. 13, no. 2, pp. 294–304. Available at: https://www.mathnet.ru/rus/de2993. (In Russ.)
  8. Kamynin L.I. A boundary value problem in the theory of heat conduction with a nonclassical boundary condition. USSR Computational Mathematics and Mathematical Physics, 1964, vol. 4, issue 6, pp. 33—59. DOI: https://doi.org/10.1016/0041-5553(64)90080-1. (In English; original in Russian)
  9. Pulkina L.S. The L2 solvability of a nonlocal problem with integral conditions for a hyperbolic equation. Differential Equations, 2000, vol. 36, issue 2, pp. 316-–318. DOI: https://doi.org/10.1007/BF02754219. (In English; original in Russian)
  10. Pulkina L.S. A non-local problem for a hyperbolic equation with integral conditions of the 1st kind with time-dependent kernels. Russian Mathematics, 2012, vol. 56, issue 10, pp. 26–37. DOI: https://doi.org/10.3103/S1066369X12100039. (in English; original in Russian)
  11. Pulkina L.S., Savenkova A.E. A problem with second kind integral conditions for hyperbolic equation. Vestnik of Samara University. Natural Science Series, 2016, no. 1-2, pp. 33–45. Available at: https://www.mathnet.ru/rus/vsgu499; https://www.elibrary.ru/item.asp?id=29345215. EDN: https://www.elibrary.ru/wfyota. (In Russ.)
  12. Pulkina L.S. A Nonlocal Problem with Integral Conditions for a Hyperbolic Equation. Differential Equations, 2004, vol. 40, no. 7, pp. 887–892. DOI: https://doi.org/10.1023/B:DIEQ.0000047025.64101.16 (In English; original in Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Buntova Y.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).