INTEGRAL ALGORITHM OF P300 RECOGNITION IN EEG FOR BCI APPLICATION


Cite item

Full Text

Abstract

Aim - developing the integral algorithm of recognition of the evoked potential (ERP-response) to a target visual stimulus and testing of the proposed algorithm on the wireless 5-channel electroencephalograph Emotiv Insight with “dry” electrodes. Materials and methods. The objects of the study were the EEG records of five volunteers. Were used 5-channel wireless EEG headset Emotiv Insight, self-developed software «eSpeller», software environment MathWork® MATLAB R2015a. Results. It was found that the proposed integral algorithm of recognition of electrical activity of the cerebral cortex to a target visual stimulus shows the accuracy of the detection from 71.5% to 90.6% with the average value 80.1+7.2%, using EEG headset Emotiv Insight. Conclusion. The algorithm shows a high level of reliability of recognition of evoked potential to a target visual stimulus, does not require large computing power, sophisticated classification methods and machine learning. The testing of the algorithm suggests the possibility of using the electroencephalograph Emotiv Insight with "dry" electrodes in the development of BCI.

About the authors

S N Agapov

IT-Universe (Samara)

Email: sergeyagapov@it-universe.ru
specialist of the laboratory of mathematical processing of biological information, IT Universe LLC. of. 323, 3 Eroshevsky st., Samara, Russia, 443086

V A Bulanov

IT-Universe (Samara)

Email: vb@it-universe.ru
head of the laboratory of mathematical processing of biological information, IT Universe LLC.

A V Zakharov

Samara State Medical University

Email: zakharov1977@mail.ru
PhD, associate professor of the Department of Neurology and Neurosurgery, head of the Laboratory of Neurointerface of the Centre for breakthrough research «IT in Medicine», SSMU

M S Sergeeva

Samara State Medical University

Email: marsergr@yandex.ru
PhD, associate professor of the Department of Physiology with the course of life safety and medicine of catastrophes, head of the Laboratory of Applied Neurophysiology of the Centre for breakthrough research «IT in Medicine», SSMU.

V F Pyatin

Samara State Medical University

Email: pyatin_vf@list.ru
PhD, professor, head of the Department of Physiology with the course of life safety and medicine of catastrophes, head of the Department of Neurointerface and Applied Neurophysiology of the Centre for breakthrough research «IT in Medicine», SSMU

References

  1. Пятин В.Ф., Колсанов А.В., Сергеева М.С., Захаров А.В., Антипов О.И., Коровина Е.С., Тюрин Н.Л., Глазкова Е.Н. Информационные возможности использования мю- и бета-ритмов ЭЭГ доминантного полушария в конструировании нейрокомпьютерного интерфейса. Фундаментальные исследования. 2015; 2(5):975-978. Доступно по: http://www. fundamental-research.ru/ru/article/view?id=36967. Ссылка активна на 21.08.2016 г
  2. Edlinger G, Allison BZ, Guger C. How many people can use a BCI system? Clinical Systems Neuroscience. 2015:33-66
  3. Birbaumer N, Hinterberger T, Kuebler A,. Neumann N. The thought-translation device (TTD): Neurobehavioral mechanisms and clinical outcome. IEEE Trans. NeuralSyst. Rehabil. Eng. 2003.vol. 11(2):120-123
  4. Norcia AM, Appelbaum LG, Ales JM, Cottereau BR, Rossion B. The steady-state visual evoked potential in vision research. A review, J. Vis., 2015, vol. 15 (6):4
  5. Luck SJ. An Introduction to the Event-Related Potential Technique. 2005, vol. 78(3)
  6. Krusienski DJ, Sellers EW, Cabestaing F, Bayoudh S, McFarland DJ, Vaughan TM, Wolpaw JR. A comparison of classification techniques for the P300 Speller. J. Neural Eng., 2006.vol. 3(4):299-305
  7. Sun S, Zhou J. A review of adaptive feature extraction and classification methods for EEG-based brain-computer interfaces. Proceedings of the International Joint Conference on Neural Networks, 2014:1746-1753
  8. Fazel-rezai R, Gavett S, Ahmad W, Rabbi A, Schneider E. A Comparison among Several P300 Brain-Computer Interface Speller Paradigms. Clin. EEG Neurosci. 2011.vol. 42(4):209-213

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Agapov S.N., Bulanov V.A., Zakharov A.V., Sergeeva M.S., Pyatin V.F.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).