Justification of the optimal width of a front bank

Cover Page

Cite item

Full Text

Abstract

Reducing the cost of finished products by using the most economically advantageous processes and techniques for the extraction and beneficiation of minerals is one of the most pressing tasks in mining industry. The width of front bank has a significant impact on the cost of placer deposits mining. Existing methods for calculating the most advantageous width of front bank are based on ensuring dredge maximum productivity that is justified in placer bulk mining. With increasing depth of a placer deposit occurrence and thickness of overburden, traditional methods for calculating the optimal width of a front bank do not ensure minimizing production costs. The aim of the research is to determine the most advantageous width of a front bank, taking into account a peat (overburden) thickness and acceptable stripping flow sheet. The idea behind this work is that the optimal width of a front bank should be determined not only based on the maximum productivity of a dredge, but also on the condition of ensuring the lowest cost of extraction of valuable components (taking into account the productivity of all mining equipment and the stripping costs). The study analyzes the impact of placer parameters (peat thickness and productive layer thickness, front bank width) on the cost of sand extraction and processing, and identifies the dependencies of mining parameters on technical and economic performance. The study examined more than 100 process flow sheets for the integrated operation of stripping and mining equipment and provided an economic assessment of their effectiveness. Recommended values for correction factors for determining the optimum front bank width are given. The study findings serve as methodological material for substantiating the parameters of a placer mining system.

About the authors

B. L. Talgamer

Irkutsk National Research Technical University

Email: talgamer@ex.istu.edu
ORCID iD: 0000-0003-1201-2693
SPIN-code: 9923-3382

I. A. Meshkov

Irkutsk National Research Technical University

Email: pach.van@mail.ru
ORCID iD: 0009-0006-5298-7929
SPIN-code: 1281-7695

N. V. Murzin

Irkutsk National Research Technical University

Email: murzinnv@ex.istu.edu
ORCID iD: 0000-0002-6833-7860
SPIN-code: 5296-8979

Yu. G. Roslavtseva

Irkutsk National Research Technical University

Email: ryg@ex.istu.edu
ORCID iD: 0000-0001-8799-7269
SPIN-code: 8787-0362

References

  1. Нафиков Р. З., Кисляков В. Е. Технология дражной разработки россыпных месторождений в условиях Крайнего Севера. Красноярск: Сибирский федеральный университет; 2021. 184 с.
  2. Дорош Е. А., Тальгамер Б. Л. Анализ минерально-сырьевой базы золотодобычи в Ленском золотоносном районе и обоснование направлений развития способов разработки россыпей. Науки о Земле и недропользование. 2022;45(3):222-234. https://doi.org/10.21285/2686-9993-2022-45-3-222-234
  3. Ван-Ван-Е А. П. Ресурсная база природно-техногенных золотороссыпных месторождений. М.: Горная книга; 2010. 268 с.
  4. Бортников Н. С., Волков А. В., Лаломов А. В. и др. Роль россыпных месторождений в обеспечении воспроизводства минерально-сырьевой базы дефицитных видов стратегического минерального сырья России на современном этапе. Russian Journal of Earth Sciences. 2024;(1):1-16. https://doi.org/10.2205/2024ES000897
  5. Дудинский Ф. В., Нечаев К. Б., Костромитинов К. Н. Эффективность комбинированной разработки глубоких россыпей. Известия высших учебных заведений. Горный журнал. 2012;(5):4-9.
  6. Лешков В. Г. Теория и практика разработки россыпей многочерпаковыми драгами. М.: Недра; 1980. 352 с.
  7. Okoyen E., Raimi M. O., Omidiji A. O., Ebuete A. W. Governing the environmental impact of dredging: Consequences for marine biodiversity in the Niger delta region of Nigeria. Insights Mining Science and Technology. 2020;2(3):76-84. https://doi.org/10.19080/IMST.2020.02.555586
  8. Marrugo-Negrete J., Pinedo-Hernandez J., Marrugo-Madrid S. et al. Evaluating ecological risks and metal bioavailability in post-dredging sediments of a wetland affected by artisanal gold mining. Science of the Total Environment. 2024;955:176309. https://doi.org/10.1016/j.scitotenv.2024.176309
  9. Mantey J., Nyarko K. B., Owusu-Nimo F. et al. Influence of illegal artisanal small-scale gold mining operations (galamsey) on oil and grease (O/G) concentrations in three hotspot assemblies of Western Region, Ghana. Environmental Pollution. 2020;263(Part B):114251. https://doi.org/10.1016/j.envpol.2020.114251
  10. Talgamer B. L., Dudinskiy F. V., Murzin N. V. Assessment of conditions and experience of technogenic placer dredging. In: IOP Conference Series: Earth and Environmental Science, Volume 408, 2nd International Scientific Conference «Sustainable and Efficient Use of Energy, Water and Natural Resources. 16-20 September 2019, Irkutsk Region, Russian Federation. 2020;408(1):012065. https://doi.org/10.1088/1755-1315/408/1/012065
  11. Timsina S., Hardy N. G., Woodbury D. J. et al. Tropical surface gold mining: A review of ecological impacts and restoration strategies. Land Degradation & Development. 2022;33(18):3661-3674. https://doi.org/10.1002/ldr.4430
  12. Queiroz J., Gasparinetti P., Bakker L. B. et al. Socioeconomic cost of dredge boat gold mining in the Tapajós basin, eastern Amazon. Resources Policy. 2022;79(2):103102 https://doi.org/10.1016/j.resourpol.2022.103102
  13. Cano-Londoño N. A., Capaz R. S., Hasenstab C. et al. Life cycle impacts assessment of two gold extraction systems in Colombia: open-pit and alluvial mining. The International Journal of Life Cycle Assessment. 2023;28(4):380-397. https://doi.org/10.1007/s11367-023-02141-5
  14. Davies P., Lawrence S., Turnbull J. et al. Mining modification of river systems: A case study from the Australian gold rush. Geoarchaeology. 2019;1-16. https://doi.org/10.1002/gea.21775
  15. Мурзин Н. В., Дудинский Ф. В., Тальгамер Б. Л. Оценка простоев при расчете производительности свайных драг. Горная промышленность. 2021;(2):120-126. https://doi.org/10.30686/1609-9192-2021-2-120-126
  16. Mirzekhanov G. S., Mirzekhanova Z. G. Forward appraisal of potential gold content of dredge and sluice tailings dumps at placers in Russia’s Far East. Journal of Mining Science. 2020;56(2):259-267. https://doi.org/10.1134/S1062739120026733
  17. Helmons R., de Wit L., de Stigter H., Spearman J. Dispersion of benthic plumes in deep-sea mining: What lessons can be learned from dredging? Frontiers in Earth Science. 2022;10. https://doi.org/10.3389/feart.2022.868701
  18. Torres C., Verschoor G. Re-imagining environmental governance: Gold dredge mining vs Territorial Health in the Colombian Amazon. Geoforum. 2020;117(4):124-133. https://doi.org/10.1016/j.geoforum.2020.09.013
  19. Шорохов С. М. Технология и комплексная механизация разработки россыпных месторождений. М.: Недра; 1973. 795 с.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).