The collective crisis of humanity as a path to genuine "superintellect": why the affective reality of humans cannot be reduced to algorithmic and neuromorphic processes
- Authors: Sayapin V.O.1
-
Affiliations:
- Issue: No 9 (2025)
- Pages: 88-111
- Section: Articles
- URL: https://ogarev-online.ru/2454-0757/article/view/366871
- EDN: https://elibrary.ru/VVCJBT
- ID: 366871
Cite item
Full Text
Abstract
In the era of rapid development of artificial neural networks, the philosophy of J. Simondon offers a radically new perspective on the nature of "superintelligence" (ASI). Unlike popular technocratic concepts such as R. Kurzweil's "singularity," F. Heylighen's "global brain," I.J. Good's "intelligence explosion," or D. Chalmers' "computational functionalism," which reduce "superintelligence" to computational power and algorithmic complexity, Simondon reveals it as an emergent and dynamic result of the mental and collective phases of individuation, namely as a process that always requires affective tension, existential crises, and transformation of the entire "human-machine" ecology. This article is relevant as a response to the deadlock of modern artificial neural networks, which, despite impressive results in recursive self-improvement, remain "operators of metastuctures," devoid of consciousness and creative depth, confined to the framework of the "dynamic scheme" of the technical phase of individuation. The methodological approach of the research is based on the sequential application of four complementary methods: phenomenological analysis, hermeneutic analysis, synergistic approach, and biosocial-semiotic analysis. The proposed methodology allows for a comprehensive approach to this complex process: from individual experience (phenomenology) through understanding and communication (hermeneutics) to the dynamics of systemic transitions (synergetics), with constant consideration of the biosocial and semiotic rootedness of humanity (biosocial-semiotic analysis). The novelty of Simondon's approach lies in the radical rethinking of the path to "superintelligence": not through algorithmic breakthroughs, but through the existential overcoming of the civilizational crisis, where technology becomes not a replacement for humanity, but a new "organ" of its collective intelligence. Analyzing the fundamental limitations of artificial neural networks and promising developments (from AGI to neuromorphic artificial chips), the article argues that true "superintelligence" is only possible as a metamorphosis of the human based on affective depth, rather than as its algorithmic simulation. Contrary to technocratic utopias, Simondon interprets "superintelligence" not as an engineering product, but as an emergent outcome of a global evolutionary turning point – ecological, meaningful, and technological, where humanity, transforming disunity into solidarity, makes a leap into a new transindividual (technosocial) phase of individuation. The main conclusion of the article: without spontaneous affectivity and crisis as the "fuel" of transformation, even the most advanced artificial neural networks will remain "blind" operators of "metastructures."
About the authors
Vladislav Olegovich Sayapin
Email: vlad2015@yandex.ru
ORCID iD: 0000-0002-6588-9192
References
Kissinger H., Schmidt E., Huttenlocher D. The Age of AI: And Our Human Future. Boston: Little, Brown and Company, 2021. 272 с. Simondon G. Du mode d'existence des objets techniques. Paris: Aubier, 1958. 266 с. Simondon G. L'individu et sa genèse physico-biologique. Paris: Presses universitaires de France, 1964. 304 с. Simondon G. L'individuation psychique et collective. Paris: Aubier, 1989. 293 с. Simondon G. Gilbert Simondon: une pensée de l'individuation et de la technique. Paris: Albin Michel, 1994. 278 с. Simondon G. L'individuation à la lumière des notions de forme et d'information. Grenoble: Millon, 2005. 571 с. Olshausen B.A., Field D.J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images // Nature. 1996. Vol. 381, No. 6583. С. 607-609. [Электронный ресурс]. Режим доступа: https://doi.org/10.1038/381607a0 Marcus G. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631. 2018. [Электронный ресурс]. Режим доступа: https://arxiv.org/abs/1801.00631 Аршинов В.И., Свирский Я.И. Сложностный мир и его наблюдатель. Ч. 1-я // Философия науки и техники. 2015. № 2. С. 70-84. EDN: VCVPHD Саяпин В.О. Рекурсия как способ самоорганизации современного социума // Вестник Воронежского государственного университета. Серия: Философия. Воронеж, 2023. № 3 (49). С. 62-67. EDN: SRUPMZ Ивахненко Е.Н. Аллагматика Симондона vs диалектика Гегеля // Вестник Московского университета. М., 2023. Т. 47. № 6. С. 107-126. Аршинов В.И., Янукович М.Ф. Проблема техно-субъекта в оптике мышления "вместе-со-сложностностью" // Философские науки. 2024. Т. 67. № 3. С. 53-74. doi: 10.30727/0235-1188-2024-67-3-53-74 EDN: RCVGRY Kurzweil R. The Age of Spiritual Machines: When Computers Exceed Human Intelligence. New York: Viking, 1999. 388 с. Kurzweil R. The Singularity is Near. New York: Viking/Penguin Group, Viking Adult, 2005. 652 с. Bostrom N. Superintelligence: Paths, Dangers, Strategies. Oxford: Oxford University Press, 2014. 328 с. Bender E.M., Koller A. Climbing towards NLU: On meaning, form, and understanding in the age of data // Annual Meeting of the Association for Computational Linguistics (ACL 2020). 2020. С. 5185-5198. [Электронный ресурс]. Режим доступа: https://doi.org/10.18653/v1/2020.acl-main.463 Combes M. Gilbert Simondon and the Philosophy of the Transindividual. Cambridge: MIT Press, 2012. 119 с. Thompson E. Mind in Life: Biology, Phenomenology, and the Sciences of Mind. Cambridge: Harvard University Press, 2007. 568 с. Gallagher S. Enactivist Interventions: Rethinking the Mind. Oxford: Oxford University Press, 2017. 258 с. Pfeifer R., Bongard J. How the body shapes the way we think: a new view of intelligence. Cambridge: MIT Press, 2006. 394 с. Clark A. Surfing Uncertainty: Prediction, Action, and the Embodied Mind. Oxford: Oxford University Press, 2016. 424 с. Саяпин В.О. Контингентность и метастабильность как концепты самоорганизации современного социума // Вестник Воронежского государственного университета. Серия: Философия. Воронеж, 2024. № 2. С. 47-53. EDN: XRPMKZ Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors // Nature. 1986. Vol. 323. С. 533-536. LeCun Y., Bengio Y., Hinton G. Deep learning // Nature. 2015. Vol. 521, No. 7553. С. 436-444. [Электронный ресурс]. Режим доступа: https://doi.org/10.1038/nature14539 Abadi M. et al. TensorFlow: A System for Large-Scale Machine Learning // Symposium on Operating Systems Design and Implementation (OSDI 16). 2016. С. 265-283. [Электронный ресурс]. Режим доступа: https://arxiv.org/abs/1603.04467 Kingma D.P., Ba J.L. Adam: A Method for Stochastic Optimization // In: 3rd International Conference on Learning Representations (ICLR 2015), Conference Track Proceedings. 2015. [Электронный ресурс]. Режим доступа: https://arxiv.org/abs/1412.6980 Jaderberg M. et al. Reading text in the wild with convolutional neural networks // International Journal of Computer Vision (IJCV). 2015. Vol. 116, No. 1. С. 1-20. [Электронный ресурс]. Режим доступа: https://doi.org/10.1007/s11263-015-0823-z EDN: XDUWMV Greff K. et al. Tagger: Deep Unsupervised Perceptual Grouping // Advances in Neural Information Processing Systems 29 (NIPS 2016). 2016. С. 4484-4492. [Электронный ресурс]. Режим доступа: https://papers.nips.cc/paper/2016/hash/6aca97005c68f1206823815f66102863-Abstract.html Hinton G.E. The Forward-Forward Algorithm: Some Preliminary Investigations. arXiv preprint arXiv:2212.13345. 2022. [Электронный ресурс]. Режим доступа: https://arxiv.org/abs/2212.13345 Goodfellow I., Bengio Y., Courville A. Deep learning. Cambridge: MIT Press, 2016. 800 с. Wan L. et al. Regularization of Neural Networks using DropConnect // Proceedings of the 30th International Conference on Machine Learning (ICML 2013). 2013. Vol. 28. С. 1058-1066. Sabour S., Frosst N., Hinton G.E. Dynamic Routing Between Capsules // Advances in Neural Information Processing Systems (NIPS). 2017. Vol. 30. С. 3856-3866. Indiveri G. et al. Neuromorphic Silicon Neuron Circuits // Frontiers in Neuroscience. 2011. Vol. 5, No. 73. [Электронный ресурс]. Режим доступа: https://doi.org/10.3389/fnins.2011.00073 Davies M. et al. Loihi: A Neuromorphic Manycore Processor with On-Chip Learning // IEEE Micro. 2018. Vol. 38, No. 1. С. 82-99. [Электронный ресурс]. Режим доступа: https://doi.org/10.1109/MM.2018.112130359 Merolla P.A. et al. A Million Spiking-Neuron Integrated Circuit with a Scalable Communication Network and Interface // Science. 2014. Vol. 345, No. 6197. С. 668-673. [Электронный ресурс]. Режим доступа: https://doi.org/10.1126/science.1254642 Furber S.B. et al. The SpiNNaker Project // Proceedings of the IEEE. 2014. Vol. 102, No. 5. С. 652-665. [Электронный ресурс]. Режим доступа: https://doi.org/10.1109/JPROC.2014.2304638 Mead C. How We Created Neuromorphic Engineering // Nature Electronics. 2020. Vol. 3, No. 7. С. 434-435. [Электронный ресурс]. Режим доступа: https://doi.org/10.1038/s41928-020-0448-2 EDN: PPPDIM
Supplementary files
