Application of logical modeling for the analysis and classification of medical data for the purpose of diagnosis.

Cover Page

Cite item

Full Text

Abstract

The subject of the research is a logical approach to data analysis and the development of software tools capable of identifying hidden patterns, even with a limited amount of data. The input data consists of indicators of the diagnosis of patients, their diagnoses and the experience of doctors obtained in the course of medical practice. The research method is the development of software tools based on systems of multivalued predicate logic for the analysis of patient data. This approach considers the source data as a set of general rules, among which it is possible to distinguish those rules that are sufficient to explain all the observed data. These rules, in turn, are generative for the area under consideration and help to better understand the nature of the objects under study. The novelty of the study lies in the use of multivalued logic to analyze a limited amount of medical data of patients in order to determine the most likely diagnosis with a given accuracy. The proposed approach makes it possible to detect hidden patterns in the symptoms and results of patient examinations, classify them and identify unique signs of various forms of gastritis. Unlike neural networks, logical analysis is transparent and does not require training on large amounts of data. The conclusions of the study show the possibility of such an approach for diagnosis with a lack of information, as well as the offer of alternatives if the required accuracy of diagnosis is not achieved.

References

  1. "em"Журавлёв Ю. И. Об алгебраическом подходе к решению задач распознавания или классификации // Проблемы кибернетики. 1978. Т. 33. С. 5–68"/em".
  2. Шибзухов З.М. Корректные алгоритмы агрегирования операций // Распознавание образов и анализ изображений. 2014. № 3 – 24. C. 377-382.
  3. Ashley I. Naimi, Laura B. Balzer Multilevel generalization: an introduction to super learning // European Journal of Epidemiology. 2018. Vol. 33. P. 459–464.
  4. Haoxiang, Wang, Smith S. Big data analysis and perturbation using a data mining algorithm // Journal of Soft Computing Paradigm. 2021. №. 3 – 01. P. 19-28.
  5. Joe MrK, Vijesh, Jennifer S. Raj User Recommendation System Dependent on Location-Based Orientation Context // Journal of Trends in Computer Science and Smart Technology. 2021. № 3-01. P. 14-23.
  6. Grabisch M., Marichal J-L, Pap E. Aggregation functions // Cambridge University Press. 2009. Vol. 127.
  7. Calvo T, Belyakov G. Aggregating functions based on penalties // Fuzzy sets and systems. 2010. № 10-161. P. 1420-1436.
  8. Mesiar R, Komornikova M, Kolesarova A, Calvo T. Fuzzy aggregation functions: a revision // Sets and their extensions: representation, aggregation and models. Springer-Verlag, Berlin, 2008.
  9. Yang F, Yang Zh, Cohen W.W. Differentiable learning of logical rules for reasoning in the knowledge base // Advances in the field of neural information processing systems. 2017. P. 2320-2329
  10. Akhlakur R., Sumaira T. Ensemble classifiers and their applications: a review //International Journal of Computer Trends and Technologies. 2014. Vol. 10. P. 31-35
  11. Lyutikova L.A., Shmatova E.V. Algorithm for constructing logical operations to identify patterns in data // E3S Web of Conferences, Moscow, 25–27 ноября 2020 года. – Moscow, 2020. Vol. 224, P. 01009.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).