Instrumental approach to programming in MultiOberon system

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Object-oriented approaches to programming have their own scope of applicability. For a number of tasks, preference is traditionally given to classical methods of structured programming. These preferences are not uncommon in a deterministic world and in machine-representation-oriented systems. Historically, classical methods developed from von Neumann's architecture of machine representation. While solving the problems of deterministic world the advantage of approaches, opposite to OOP is shown. For example, the Oberon modular language and system in classic distribution demonstrate minimalistic way of reliability, which differs from vast majority of program systems maximizing amount of features supported. Data-oriented programming technology also steps aside traditional object-oriented paradigm because data from code separation is needed. The instrumental approach proposed by author is linking Oberon technologies with data-oriented programming, keeping interface interaction mechanisms from OOP. The instrument with no data, but associated with data is introduced instead of an object. MultiOberon restrictive semantics makes an opportunity to turn off OOP restriction and switch on instruments usage. Instrument is instantiated automatically on program module loading. Instrument is queried either by its type or by the type of record associated. All the functionality is implemented in MultiOberon compiler. Instrumental approach was used for SCADA-platform software development, which targets complex automation and diagnostics. It is used in dynamically loaded plugins for data types matched shared memory data types. The instrumental approach offers a different branch of development from OOP for the classic Oberon programming language and the classical approach

Авторлар туралы

Dmitry Dagaev

Email: dvdagaev@oberon.org
ORCID iD: 0000-0003-0343-3912

Әдебиет тізімі

  1. David West. Object Thinking. Microsoft Press, 2004. С. 87-89.
  2. Вирт Н., Алгоритмы и структуры данных. ДМК-Пресс, 2016. С. 272.
  3. Н. Вирт, Ю. Гуткнехт. Разработка операционной системы и компилятора. Проект Оберон. ДМК-Пресс, 2017. С. 560.
  4. Дагаев Д.В. Ограничительная семантика языка в системе МультиОберон // Программные системы и вычислительные методы. – 2023. – № 1. – С. 26-41. doi: 10.7256/2454-0714.2023.1.36217 EDN: IWIODR
  5. Rajive J., Ph.D. Data-Oriented Architecture: A Loosely-Coupled Real-Time SOA, Real-Time Innovations, Inc., 2007 August. С. 19-23.
  6. Гамма Э., Хэлм Р., Джонсон Р., Влиссидес Дж. Приемы объектно-ориентированного проектирования. Паттерны проектирования. СПб: Питер, 2019. С. 368.
  7. Дагаев Д.В. О разработке Оберон-системы с заданными свойствами эргодичности. Труды ИСП РАН, том 32, вып. 6, 2020 г., стр. 67-78. doi: 10.15514/ISPRAS–2020–32(6)
  8. Копылов М.С., Дерябин Н.Б., Денисов Е.Ю. Объектно-ориентированный подход к поддержке сценариев в системах оптического моделирования // Труды Института системного программирования РАН. 2023. No 35(2). стр. 169-180.
  9. Nazar N., Aleti A., Zheng Y. Feature-based software design pattern detection // Journal of Systems and Software, 2022, vol. 185, pp. 1-12.
  10. Yu D., Zhang P., Yang J., Chen Z., Liu C., Chen J. Efficiently detecting structural design pattern instances based on ordered sequences // Journal of Systems and Software, 2018, vol. 142, pp. 35–56.
  11. Lo S. K., Lu Q., Zhu L., Paik H.-Y., Xu X., Wang C. Architectural patterns for the design of federated learning systems // Journal of Systems and Software, 2022, vol. 191, p. 357.
  12. Hosking A., Nystrom N., Cutts Q., Brahnmath K. Optimizing the read and write barriers for orthogonal persistence // Advances in Persistent Object Systems, Morrison, Jordan, and Atkinson (Eds.). Morgan Kaufmann, 1999. p. 11.
  13. Lefort A. A Support for Persistent Memory in Java // Computer science. Institut Polytechnique de Paris, 2023. English. p. 10.
  14. ГОСТ Р МЭК 60880, Программное обеспечение компьютерных систем, выполняющих функции категории А // 2009. стр. 220.
  15. Таненбаум А. Современные операционные системы // 4-е изд. – СПб.: Питер, 2015. Стр. 100-101.
  16. Дагаев Д.В. Исполняющая машина автоматных программ // Научно-технический вестник информационных технологий, механики и оптики. 2021. Т. 21, № 4. С. 525-534.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).