Integration of cloud, fog, and edge technologies for the optimization of high-load systems

Abstract

The study is dedicated to analyzing methods and tools for optimizing the performance of high-load systems using cloud, fog, and edge technologies. The focus is on understanding the concept of high-load systems, identifying the main reasons for increased load on such systems, and studying the dependency of the load on the system's scalability, number of users, and volume of processed data. The introduction of these technologies implies the creation of a multi-level topological structure that facilitates the efficient operation of distributed corporate systems and computing networks. Modern approaches to load management are considered, the main factors affecting performance are investigated, and an optimization model is proposed that ensures a high level of system efficiency and resilience to peak loads while ensuring continuity and quality of service for end-users. The methodology is based on a comprehensive approach, including the analysis of existing problems and the proposal of innovative solutions for optimization, the application of architectural solutions based on IoT, cloud, fog, and edge computing to improve performance and reduce delays in high-load systems. The scientific novelty of this work lies in the development of a unique multi-level topological structure capable of integrating cloud, fog, and edge computing to optimize high-load systems. This structure allows for improved performance, reduced delays, and effective system scaling while addressing the challenges of managing large data volumes and servicing multiple requests simultaneously. The conclusions of the study highlight the significant potential of IoT technology in improving production processes, demonstrating how the integration of modern technological solutions can contribute to increased productivity, product quality, and risk management.

References

  1. Catal, C.; Tekinerdogan, B. Aligning education for the life sciences domain to support digitalization and Industry 4.0. Procedia Computer Science. 2019, 158, 99-106. doi: 10.1016/j.procs.2019.09.032
  2. Patel, C.; Doshi, N. A novel MQTT security framework in generic IoT model. Procedia Computer Science. 2020, 171, 1399-1408. doi: 10.1016/j.procs.2020.04.150
  3. Subeesh, A.; Mehta, C.R. Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture. 2021, 5, 278-291. doi: 10.1016/j.aiia.2021.11.004
  4. Faridi, F.; Sarwar, H.; Ahtisham, M.; Kumar, S.; Jamal, K. Cloud computing approaches in health care. Materials Today: Proceedings, 2022, 51, 1217-1223. doi: 10.1016/j.matpr.2021.07.210
  5. Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering. 2017, 164, 31-48. doi: 10.1016/j.biosystemseng.2017.09.007
  6. Tao, W.; Zhao, L.; Wang, G.; Liang, R. Review of the internet of things communication technologies in smart agriculture and challenges. Computers and Electronics in Agriculture. 2021, 189, 106352. doi: 10.1016/j.compag.2021.106352
  7. Moysiadis, V.; Sarigiannidis, P.; Vitsas, V.; Khelifi, A. Smart farming in Europe. Computer Science Review. 2021, 39, 100345. doi: 10.1016/j.cosrev.2020.100345
  8. Raj, M.; Gupta, S.; Chamola, V.; Elhence, A.; Garg, T.; Atiquzzaman, M.; Niyato, D. A survey on the role of Internet of Things for adopting and promoting Agriculture 4.0. Journal of Network and Computer Applications. 2021, 187, 103107. doi: 10.1016/j.jnca.2021.103107
  9. Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.; Wan, S.; Goudos, S.K. Internet of Things (IoT) and agricultural unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review. Internet of Things. 2022, 18, 100187. doi: 10.1016/j.iot.2020.100187
  10. Singh, S.; Chana, I.; Buyya, R. Agri-Info: Cloud based autonomic system for delivering agriculture as a service. Internet of Things. 2020, 9, 100131. doi: 10.1016/j.iot.2019.10013

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).