Configuration of memory-oriented motion control system
- Authors: Zelenskii A.A.1, Gribkov A.A.1
-
Affiliations:
- Issue: No 3 (2024)
- Pages: 12-25
- Section: Articles
- URL: https://ogarev-online.ru/2454-0714/article/view/359406
- DOI: https://doi.org/10.7256/2454-0714.2024.3.71073
- EDN: https://elibrary.ru/TTQBBA
- ID: 359406
Cite item
Full Text
Abstract
The paper investigates the possibilities of configuring the control cycle, i.e., determining the distribution of time intervals required for the execution of individual control operations across execution threads, which ensures the realizability of control. The object of research in this article are control systems with object-oriented architecture, assuming a combined vertical-horizontal integration of functional blocks and modules that distribute all control tasks among themselves. This architecture is realized by means of an actor instrumental model using metaprogramming. Such control systems are best at reducing control cycle time by performing computational and other control operations in parallel. Several approaches to control cycle configuration are considered: without optimization, with combinatorial optimization in time, with combinatorial optimization in system resources. Also, achieving a near-optimal configuration can be achieved by using adaptive configuration. Research shows that the control system cycle configuration problem has several solutions. Practical obtaining a solution to the configuration problem in the case of combinatorial optimization is associated with significant difficulties due to the high algorithmic complexity of the problem and a large amount of required computations, rapidly growing as the number of operations at the stages of the control cycle. A possible means of overcoming these difficulties is the use of stochastic methods, which sharply reduce the required amount of computation. Also, a significant reduction in the complexity of the task of configuring the control system cycle can be achieved by using adaptive configuration, which has two variants of realization. The first variant is the real-time configuration of the control system cycle. The second variant is the determination of quasi-optimal configuration on the basis of multiple configurations with different initial data and subsequent comparison of the obtained results.
About the authors
Aleksandr Aleksandrovich Zelenskii
Email: zelenskyaa@gmail.com
ORCID iD: 0000-0002-3464-538X
Andrei Armovich Gribkov
Email: andarmo@yandex.ru
ORCID iD: 0000-0002-9734-105X
References
Зеленский А.А., Кузнецов А.П., Илюхин Ю.В., Грибков А.А. Реализуемость управления движением промышленных роботов, станков с ЧПУ и мехатронных систем. Часть 1 // Вестник машиностроения. 2022. №11. С. 43-51. Зеленский А.А., Кузнецов А.П., Илюхин Ю.В., Грибков А.А. Реализуемость управления движением промышленных роботов, станков с ЧПУ и мехатронных систем. Часть 2 // Вестник машиностроения. 2023. №3. С. 213-220. Cell Broadband Engine Programming Tutorial. Version 2.0. IBM Systems and Technology Group, December 15, 2006. URL: https://arcb.csc.ncsu.edu/~mueller/cluster/ps3/CBE_Tutorial_v2.0_15December2006.pdf Ghose S., Hsieh K., Boroumand A., Ausavarungnirun R., Mutlu O. Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, Future Research Directions. 2018. URL: https://arxiv.org/abs/1802.00320 Singh G., Chelini L., Corda S., Awan A.J., Stuijk S., Jordans R., Corporaal H., Boonstraz A. Near-Memory Computing: Past, Present, and Future. August 2019, Microprocessors and Microsystems 71. URL: https://www.researchgate.net/publication/335028505_Near-Memory_Computing_Past_Present_and_Future Зеленский А.А., Ивановский С.П., Илюхин Ю.В., Грибков А.А. Программирование доверенной память-центрической системы управления движением робототехнических и мехатронных систем // Вестник Московского авиационного института. 2022. Т. 29. № 4. С. 197-210. Juurlink B., Meenderinck C. Amdahl's law for predicting the future of multicores considered harmful // ACM SIGARCH Computer Architecture News, 40 (2012), 2. pp. 1-9. Кнут Д.Э. Искусство программирования, том 3. Сортировка и поиск. М.: ООО "И.Д. Вильямс", 2018. 832 с. Time Complexities of all Sorting Algorithms. Geeks for Geeks, 2023. URL: https://www.geeksforgeeks.org/time-complexities-of-all-sorting-algorithms/ Heap Algorithms. Massachusetts Institute of Technology, 2010. URL: https://courses.csail.mit.edu/6.006/fall10/handouts/recitation10-8.pdf Binary Insertion Sort. Geeks for Geeks, 2023. URL: https://www.geeksforgeeks.org/binary-insertion-sort/
Supplementary files

