Proof of Performance Consensus Model and Algorithm
- Authors: Bulgakov V.D.1, Gvozdevsky I.N.1
-
Affiliations:
- Issue: No 4 (2024)
- Pages: 23-48
- Section: Articles
- URL: https://ogarev-online.ru/2454-0714/article/view/359392
- DOI: https://doi.org/10.7256/2454-0714.2024.4.71119
- EDN: https://elibrary.ru/NAGMFW
- ID: 359392
Cite item
Full Text
Abstract
The article examines the working principle of the Proof of Performance (PoP) model, based on a consensus algorithm that supports horizontal sharding functions. The PoP model introduces changes to the traditional block structure used in Proof of Stake algorithms and Tendermint-based networks. Horizontal sharding allows transactions to be distributed among multiple nodes (shards), significantly increasing the network's throughput. The main goal of the study is to explore ways to enhance the efficiency and scalability of blockchain networks through dynamic transaction distribution and adaptive node management. An important aspect is the definition of parameters and adjustable characteristics of nodes, such as performance and reliability, to ensure even and fair load distribution within the network. This provides the system with the ability to adapt to changing load conditions. The study employs analytical and formal methods to describe the block structure, transaction distribution mechanism, and the system of penalties and rewards for shards. The research represents an innovative approach to managing blockchain networks, focusing on node performance. The PoP model with horizontal sharding provides higher throughput and scalability compared to traditional consensus algorithms. A system of dynamic load distribution and adaptive weight adjustment of nodes based on their performance is proposed, which contributes to the improvement of the network's efficiency and reliability. The results of the study demonstrate that the Proof of Performance model significantly increases transaction processing speed and overall blockchain network performance. Application examples confirm the model's effectiveness in various types of networks, such as DeFi platforms, supply chain management systems, and IoT networks. The PoP model encourages nodes to maintain high performance, ensuring fair load distribution and enhancing the overall network resilience.
About the authors
Vladislav Dmitrievich Bulgakov
Email: bulgakovvlad@yandex.ru
ORCID iD: 0009-0006-2056-6169
Igor Nikolaevich Gvozdevsky
Email: Gvozdevskiy.in@bstu.ru
ORCID iD: 0000-0002-3235-3869
References
Бауэр В.П., Побываев С.А., Кузнецов Н.В. Потенциал использования технологии распределенного реестра (блокчейн) в системах государственного управления // Фундаментальные исследования. 2019. № 12 (часть 2). С. 247–252. Борискевич И.А. Алгоритмы консенсуса в блокчейн сетях // Белорусский государственный университет информатики и радиоэлектроники. 6-я Научная Конференция Аспирантов, Магистрантов и Студентов БГУИР. Минск, 2020. С. 116–117. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., & Saxena, P. (2016). A Secure Sharding Protocol for Open Blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (pp. 17–30). Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., & Ford, B. (2017). OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding. IACR Cryptology ePrint Archive, 2017(406). Zamani, M., Movahedi, M., & Raykova, M. (2018). RapidChain: Scaling Blockchain via Full Sharding. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (pp. 931–948). King, S., & Nadal, S. (2012). PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake. Retrieved from https://bitcoin.peryaudo.org/vendor/peercoin-paper.pdf Swan, M. (2015). Blockchain 2.0: Contracts. In Blockchain: Blueprint for a New Economy (pp. 9–10). O'Reilly Media, Inc. Шаламов Г. А., Петухов А. С. Слияние технологий IoT и блокчейн: от теории до реального времени // Прогрессивная экономика. 2023. № 9. С. 32. doi: 10.54861/27131211_2021_9_32. Goswami, S. (2017). Scalability analysis of blockchains through blockchain simulation. Thesis, Master of Science in Computer Science, University of Nevada, Las Vegas. Zamyatin, A., Harz, D., Lind, J., Gudgeon, L., Werner, S., & Knottenbelt, W. J. (2019). XCLAIM: Trustless, Interoperable, Cryptocurrency-Backed Assets. In IEEE Symposium on Security and Privacy (pp. 193–210). Makrakis, D., & Senhaji, A. (2023). Sharding-Based Proof-of-Stake Blockchain Protocols: Key Components & Probabilistic Security Analysis. Sensors, 23(5), 2819. doi: 10.3390/s23052819. Eyal, I., Gencer, A. E., Sirer, E. G., & van Renesse, R. (2016). Bitcoin-NG: A Scalable Blockchain Protocol. In Proceedings of the 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI '16) (pp. 45–59). Абдулжалилов А.З. Методы и стратегии масштабируемости блокчейн-технологий: анализ, сравнение и перспективы // Международный научный журнал «Вестник науки». 2023. № 11 (68). Т. 4. С. 625–634. Грепан В.Н. Практические проблемы использования блокчейн-технологий // Научный сетевой журнал «Столыпинский вестник.» 2024. № 9.
Supplementary files

