Analysis of the possibilities of determining location in a Wi-Fi network using neural network algorithms

Abstract

Indoor positioning on a Wi-Fi network belongs to a class of tasks in which the dependence of output characteristics on input variables is influenced by many parameters and external factors. When solving such problems, it is necessary to take into account that in determining the location, it is of significant interest not only to determine the static coordinates of an object, but also to predict the vector of its movements. In the case where the location of an object is determined only by the level of signal power received from several access points on a Wi-Fi network, the use of signal attenuation models that take into account the conditions of propagation of radio waves indoors is difficult due to the need for reliable information about the material of ceilings, floors and ceilings, the presence of fixed and mobile shading objects, etc. Since the electromagnetic environment inside the room varies depending on many factors, the above-mentioned models have to be adjusted to these changes. Since finding patterns in a large amount of data requires non-standard algorithms, artificial neural networks can be used to solve the positioning problem. It is important to choose a neural network architecture that can take into account changes in the signal strength received by a mobile device from Wi-Fi access points. Before training a neural network, statistical data is preprocessed. For example, abnormal cases are excluded from the machine learning dataset when the device detects a signal from less than three access points at one measuring point. As a result of the analysis of statistical data, it was found that the same distance between the measuring points leads to the fact that the neural network incorrectly determines the location of the object. The paper shows that in order to increase the accuracy of positioning the location in conditions of complex radio placement, when compiling radio maps, it is necessary to determine the optimal varying distances between measuring points. The conducted experimental studies, taking into account the proposed approach to optimizing the distances between measuring points, prove that the accuracy of location determination in the vast majority of measuring points reaches 100%.

References

  1. Андреев Р.А., Остроумов С.И., Федоров А.С. Методы позиционирования в сетях Wi-Fi // Экономика и качество систем связи. 2021. № 3 (21). С. 50-63.
  2. Кокорева Е.В., Костюкович А.Е., Дощинский И.В. Оценка погрешности измерений местонахождения абонента в сети Wi-Fi // Программные системы и вычислительные методы. 2019. № 4. С. 30-38. doi: 10.7256/2454-0714.2019.4.31316 URL: https://e-notabene.ru/itmag/article_31316.html
  3. Kokoreva, E.V., Shurygina, K.I. Bragin, A.S. Impact of Wi-Fi network coverage planning on the logistics objects location accuracy // XV International Scientific Conference on Precision Agriculture and Agricultural Machinery Industry “State and Prospects for the Development of Agribusiness-INTERAGROMASH 2022”. 2022. Vol. 363.
  4. Kokoreva, E.V. & Shurygina, K.I. An Assessment of the Local Positioning System Effectiveness // Lecture Notes in Networks and Systems. 2022. Vol. 246. Pp. 436–443.
  5. Kokoreva E., Kostyukovich A., Shurygina K., Doshchinsky I. Experimental Study of the Positioning System in the Centralized Wi-Fi Network // Lecture Notes on Data Engineering and Communications Technologies. 2022. Vol. 107. Pp. 346–357.
  6. Киреев А.В., Фокин Г.А. Оценка точности локального позиционирования мобильных устройств с помощью радиокарт и инерциальной навигационной системы // Труды учебных заведений связи. 2017. № 4. С. 54-62.
  7. Кучин И.Ю., Иксанов Ш.Ш., Рождественский С.К., Коряков А.Н. Разработка системы позиционирования и контроля объектов с помощью беспроводной технологии Wi-Fi // Научный вестник Новосибирского государственного технического университета. 2015. № 3 (60). С. 130-146.
  8. Садовникова Н.А., Шмойлова Р.А. Анализ временных рядов и прогнозирование / М.: Евразийский открытый институт, 2024.
  9. Ахметханов Р.С., Дубинин Е.Ф., Куксова В.И. Анализ временных рядов в диагностике технических систем // Машиностроение и инженерное образование. 2013. № 2. С. 11–20.
  10. Chen W., Hussain W., Cauteruccio F., Zhang X. Deep Learning for Financial Time Se-ries Prediction: A State-of-the-Art Review of Standalone and Hybrid Models // Computer Modeling in Engineering & Sciences. 2024. Vol. 139. № 1. Pp. 187-224.
  11. Ежов А.А., Шумский С.А. Нейрокомпьютинг и его применения в экономике и бизнесе. М.: ИНТУИТ, 2016.
  12. Karakida, R., Takase, T. Optimal layer selection for latent data augmentation // Neural Networks. 2024. Vol. 181.
  13. Sandnes, A.T., Grimstad, B., & Kolbjørnsen, O. Multi-task neural networks by learned contextual inputs // Neural Networks. 2024. Vol. 179.
  14. Хайкин С. Нейронные сети. Полный курс. М.: Вильямс, 2019.
  15. Zhou, X., You, Zh., Sun, W., Zhao, D., Yan, Sh. Fractional-order stochastic gradient descent method with momentum and energy for deep neural networks // Neural Networks. 2024. Vol. 181.
  16. Лизнева Ю.С. Исследование трафика ОКС N 7 и разработка методики его прогнозирования / Новосибирск: СибГУТИ, 2008.
  17. Marshoodulla S.Z, Saha G. A survey of data mining methodologies in the environment of IoT and its variants // Journal of Network and Computer Applications. 2024. Vol. 228.
  18. Zhou X., Du H., Xue Sh., Ma Zh. Recent advances in data mining and machine learning for enhanced building energy management // Energy. 2024. Vol. 307.
  19. Иванько А.Ф., Иванько М.А., Сизова Ю.А. нейронные сети: общие технологические характеристики // Научное обозрение. Технические науки. 2019. № 2. С. 17-23.
  20. Sevilla-Salcedo C., Gallardo-Antolín A., Gómez-Verdejo V., Parrado-Hernández E. Bayesian learning of feature spaces for multitask regression // Neural Networks. 2024. Vol. 179.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).