Intellectual infrastructure for automated control and interoperability of microservices in cloud environments
- Authors: Rogov D.V.1, Alpatov A.N.1
-
Affiliations:
- Issue: No 2 (2025)
- Pages: 94-114
- Section: Articles
- URL: https://ogarev-online.ru/2454-0714/article/view/359374
- DOI: https://doi.org/10.7256/2454-0714.2025.2.74760
- EDN: https://elibrary.ru/WIHQAD
- ID: 359374
Cite item
Full Text
Abstract
In the context of rapid growth in the scale and complexity of information systems, the questions of effective integration and support of microservices architectures are becoming increasingly relevant. One of the key challenges is ensuring the interoperability of software components, which implies the ability to reliably exchange data and share information between various services implemented using heterogeneous technologies, protocols, and data formats. In this work, the subject of research is the formalization and construction of an intelligent system ensuring the interoperability of microservice components within cloud infrastructure. A formalized approach is proposed, based on graph, categorical, and algebraic models, which allows for a strict description of data transmission routes, conditions for interface compatibility, and the procedure for automated agreement on interaction formats. An operation for interface agreement is introduced, which identifies the need to use adapters and converters for the integration of various services. Special attention is paid to the task of building a universal interface through which any data streams can be routed, significantly simplifying the process of scaling and refining the microservice system. The developed system architecture encompasses the stages of creation, publication, and deployment of container microservices, automatic verification of data transmission routes, and dynamic management of service states based on load forecasting using artificial intelligence models. The application of the proposed methodology allows for a significant increase in the flexibility, reliability, and scalability of the infrastructure, reduction of operational costs, and automation of the processes of support and integration of new components. The proposed solution is based on a formalized approach to ensuring the interoperability of microservice components within cloud infrastructure. A graph and categorical model is used as a foundation, allowing for a strict definition of data transmission routes and interface agreement procedures between various services. To unify interaction and enhance system flexibility, an interface agreement operation is introduced, as well as the capability for automated identification of the need for data adapters and converters. The developed intelligent load forecasting algorithm allows for dynamic management of component states and rapid adaptation of the infrastructure to changing operating conditions.
About the authors
Dmitriy Vadimovich Rogov
Email: 1664286@gmail.com
Aleksei Nikolaevich Alpatov
Email: aleksej01-91@mail.ru
References
Paul A., Kelvin L., Brown K. Optimizing IT Growth: Strategies for Building and Scaling Robust Infrastructure Systems // Ladoke Akintola University of Technology. 2024. Т. 17. URL: https://www.researchgate.net/publication/377447014. Макаренко С. И., Олейников А. Я., Черницкая Т. Е. Модели интероперабельности информационных систем // Системы управления, связи и безопасности. 2019. № 4. doi: 10.24411/2410-9916-2019-10408 EDN: NACKGD. Дьяков О. А., Солянов К. С. Формирование кредитного конвейера банка на основе систем бизнес-аналитики // Стратегии бизнеса. 2016. № 7 (27). С. 7-12. EDN: WWJUUB. ISO/IEC 2382:2015 Information technology. Vocabulary. – 2015. – Текст: электронный. URL: https://www.iso.org/ru/standard/63598.html Михневич С. Ю., Тежар А. А. Эволюция понятия интероперабельности открытых информационных систем // Цифровая трансформация. 2023. Т. 29. № 2. С. 60-66. URL: https://doi.org/10.35596/1729-7648-2023-29-2-60-66. EDN: RKSXQW. Ковалев С. П. Теоретико-категорный подход к проектированию программных систем // Фундаментальная и прикладная математика. 2014. Т. 19. № 3. С. 111-170. Сейерс Э. Х., Милл А. Docker на практике / Э. Х. Сейерс, А. Милл ; перевод с английского Д. А. Беликов. Москва : ДМК Пресс, 2020. 516 с. ISBN 978-5-97060-772-5. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/131719 (дата обращения: 04.06.2025). Режим доступа: для авториз. пользователей. Маркелов А. А. Введение в технологию контейнеров и Kubernetes / А. А. Маркелов. Москва : ДМК Пресс, 2019. 194 с. ISBN 978-5-97060-775-6. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/131702 (дата обращения: 04.06.2025). Режим доступа: для авториз. пользователей. Бонцанини М. Анализ социальных медиа на Python. Извлекайте и анализируйте данные из всех уголков социальной паутины на Python / М. Бонцанини ; перевод с английского А. В. Логунова. Москва : ДМК Пресс, 2018. 288 с. ISBN 978-5-97060-574-5. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/108129 (дата обращения: 09.06.2025). Режим доступа: для авториз. пользователей. Груздев А. В. Предварительная подготовка данных в Python / А. В. Груздев. Москва : ДМК Пресс, 2023. Том 1 : Инструменты и валидация. 2023. 816 с. ISBN 978-5-93700-156-6. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/314945 (дата обращения: 09.06.2025). Режим доступа: для авториз. пользователей.
Supplementary files

