The concentration of the main soluble ions in the ice wedges of IW-5 and IW-7 of the Batagay yedoma
- Authors: Vasil'chuk Y.K.1
-
Affiliations:
- Issue: No 4 (2024)
- Pages: 57-80
- Section: Articles
- URL: https://ogarev-online.ru/2453-8922/article/view/365779
- EDN: https://elibrary.ru/LBJOHS
- ID: 365779
Cite item
Full Text
Abstract
This work delineates the macroelements compositions in the Late Pleistocene syngenetic ice wedges (IW-5 and IW-7) situated in the bottom section of the Batagay Yedoma complex. Ice samples were extracted from ice wedges at 10 cm intervals using Makita and Bosch GSR drills equipped with steel ice crowns of 51 mm in diameter. The composition of macroelements in the ice wedges was analyzed using the ion chromatograph "Steyer." The concentrations of potassium, sodium, calcium, magnesium, chlorine, nitrates, and sulfates were measured. The mineralization of Late Pleistocene ice wedges ranges from 67 to 425 mg/L. In the analyzed ice wedges, calcium predominates among the cations (IW-5 ranging from 17.8 to 82.5 mg/L, IW-7 from 12.0 to 52.1 mg/L). Magnesium ranks second (IW-5 ranging from 3.1 to 13.6 mg/L, IW-7 ranging from 2.6 to 8.3 mg/L). Sodium and potassium cations are present in minimal concentrations: Na – IW-5 ranges from 0.8 to 6.8 mg/L, IW-7 from 0.45 to 4.0 mg/L, and K – IW-5 from 17.8 to 82.5 mg/L, IW-7 from 1.1 to 5.6 mg/L. Nitrates dominate among the anions. The nitrate concentration varies from 6.9 to 27.9 mg/L for IW-5 and from 5.0 to 54.8 mg/L for IW-7. Mean nitrate concentration IW-5: 14.5 mg/L; IW-7: 12.2 mg/L. In IW-5, the concentration of sulfate anions ranges from 2 to 17 mg/L, with an average of 6.4 mg/L, whereas the chloride concentration ranges from 1.08 to 7 mg/L, averaging 2.6 mg/L. The sulfate concentration in IW-7 ranges from 1.4 to 40.5 mg/L, with an average of 5.79 mg/L; the chloride concentration ranges from 1.13 to 4.5 mg/L, with an average of 1.96 mg/L. In IW-5, the chloride-to-sulfate ratio ranges from 0.16 to 1.45, with an average of 0.44; in IW-7, the ratio ranges from 0.04 to 1.12, with an average of 0.47. Upon comparing these data with the chloride to sulfate ratios in ground ice and surface water in North-West Siberia, we observe that the ratios most closely resemble those found in the snowfields of the Seyakha (Mutnaya) River valley on the northern Yamal Peninsula, where the chloride to sulfate ratio is 0.54, in rainwater on the Yamal Peninsula with a ratio of 1.44, and in segregated ice on the first terrace of Bely Island, where the ratio is 1.08. The chloride to sulfate ratio in IW-5 and IW-7 significantly differs from that of cryopegs (ratio 49.45) and the majority of the massive ice in the Yamal Peninsula (68.91; 26.39; 9.77, etc.). The ionic composition of the ice wedges indicative that they was formed from thawed snow generated under the influence of continental air masses.
Keywords
About the authors
Yurij Kirillovich Vasil'chuk
Email: vasilch_geo@mail.ru
ORCID iD: 0000-0001-5847-5568
References
Alexeev S. V., Alexeeva L.P., Ground ice in the sedimentary rocks and kimberlites of Yakutia, Russia. Permafr. Periglac. Process. 2002. Vol. 13. Pp. 53–59. doi: 10.1002/ppp.408. Alexeev, S.V., Alexeeva, L.P., Kononov, A.M., Trace elements and rare earth elements in ground ice in kimberlites and sedimentary rocks of Western Yakutia. Cold Reg. Sci. Technol. 2016. Vol. 123. Pp. 140–148. doi: 10.1016/J.COLDREGIONS.2015.10.008. Иванова В.В. Геохимия пластовых льдов острова Новая Сибирь (Новосибирские острова, Российская Арктика) как отражение условий их генезиса // Криосфера Земли. 2012. Том XVI. №1. С. 56–70. Опокина О.Л., Слагода Е.А., Стрелецкая И.Д., Суслова М.Ю., Томберг И.В., Ходжер Т.В. Криолитология, гидрохимия и микробиология голоценовых озерных и повторно-жильных льдов о-ва Сибирякова Карского моря // Природа шельфов и архипелагов Европейской Арктики. Вып. 10, М.: ГЕОС, 2010. С. 241–247. Опокина, 2014 Опокина О.Л., Слагода Е.А., Томберг И.В., Суслова М.Ю., Фирсова А.Д., Ходжер Т.В., Жученко Н.А. колебания уровня моря и их отражение в составе и строении полигонально-жильных льдов в низовьях Енисея // Л"em"ёд и Снег"/em". 2014. Том 54(2). С. 82–90. doi: 10.15356/2076-6734-2014-2-82-90. Vasil'chuk Yu.K., Trofimov V.T. Cryohydrochemical peculiarities of ice–wedge complexes in the north of Western Siberia // Permafrost. Fourth International Conference, Proceedings. Fairbanks. Alaska. National Academy Press. Washington, 1983. P. 1303–1308. Васильчук Ю.К. Изотопно-кислородный состав подземных льдов (опыт палеогеокриологических реконструкций). М.: Изд. Отдел. Теоретических проблем РАН. МГУ, ПНИИИС. 1992. В 2–х томах. Т. 1. – 420 с. Т. 2 – 264 с. Васильчук Ю.К., Васильчук Д.Ю., Буданцева Н.А., Васильчук А.К., Гинзбург А.П. Геохимический состав повторно-жильных льдов в Батагайской едоме // Арктика и Антарктика. 2021. № 2. С. 70-92. doi: 10.7256/2453-8922.2021.2.35962 URL: https://e-notabene.ru/arctic/article_35962.html Vasil’chuk, Yu.K., Vasil’chuk, J.Yu., Budantseva, N.A., Vasil’chuk, A.C., Belik, A.D., Bludushkina, L.B., Ginzburg, A.P., Krechetov, P.P., Terskaya, E.V. Major and trace elements, δ13C, and polycyclic aromatic hydrocarbons in the Late Pleistocene ice wedges: A case-study of Batagay yedoma, Central Yakutia. Applied Geochemistry. 2020. Vol. 120. 104669. doi: 10.1016/j.apgeochem.2020.104669. Васильчук Ю.К. Ионный состав повторно-жильных льдов №17 и №20 Батагайской едомы // Арктика и Антарктика. 2024. № 3. С. 65-90. doi: 10.7256/2453-8922.2024.3.71272 EDN: QWEIZV URL: https://e-notabene.ru/arctic/article_71272.html Буданцева Н.А., Васильчук Ю.К. Геохимический состав голоценовых и позднеплейстоценовых повторно-жильных льдов в едомных толщах Станчиковского Яра и у пос. Черский, северная Якутия // Арктика и Антарктика. 2021. № 1. С. 65–79. doi: 10.7256/2453-8922.2021.1.35361 URL: https://e-notabene.ru/arctic/article_35361.html Iizuka Y., Miyamoto C., Matoba S., Iwahana G., Horiuchi K., Takahashi Y., Kanna N., Suzuki K., Ohno H., Ion concentrations in ice wedges: An innovative approach to reconstruct past climate variability. Earth Planet. Sci. Lett. 2019. Vol. 515. Pp. 58–66. doi: 10.1016/j.epsl.2019.03.013 Campbell-Heaton K. Ice wedge activity in the Eureka Sound Lowlands, Canadian High Arctic. A thesis submitted to the University of Ottawa in partial fulfillment of the requirements for the Master of Science in Geography. Department of Geography, Environment and Geomatics. Faculty of Arts. CryoLab for Arctic, Antarctic and Planetary Studies (CLAAPS). University of Ottawa, 2020. 103 p. Vadakkedath V., Zawadzki J. & Przeździecki K. Multisensory satellite observations of the expansion of the Batagaika crater and succession of vegetation in its interior from 1991 to 2018 // Environ Earth Sci. 2020. Vol. 79. 150. doi: 10.1007/s12665-020-8895-7 Ashastina K, Schirrmeister L, Fuchs M, Kienast F. Palaeoclimate characteristics in interior Siberia of MIS 6-2: first insights from the Batagay permafrost mega-thaw slump in the Yana Highlands // Climate of the Past. 2017. Vol. 13. Pp. 795–818. doi: 10.5194/cp-13-795-2017. Vasil’chuk Yu.K., Vasil’chuk J.Yu. The first AMS dating of organic matter microinclusions in an ice wedge of the upper part of the Batagay yedoma megaslump (Yakutia) // "em"Doklady Earth Sciences."/em" 2019. Vol. 489, Part 1. Pp. 1318–1321. doi: 10.1134/S1028334X19110096. Vasil’chuk Yu.K., Vasil’chuk J.Yu., Budantseva N.A., Vasil’chuk A.C. New AMS dates of organic microinclusions in ice wedges of the lower part of Batagay yedoma, Yakutia // "em"Doklady Earth Sciences"/em". 2020.Vol. 490. Part 2. Pp. 100–103. doi: 10.1134/S1028334X20020154 Vasil'chuk Yu K., Vasil'chuk J.Yu, Budantseva N.A., Vasil'chuk A.C. (). MIS 3-2 paleo-winter temperature reconstructions obtained from stable water isotope records of radiocarbon-dated ice wedges of the Batagay Ice Complex (Yana Upland, eastern Siberia) // Radiocarbon. 2022. Vol. 64. № 6. Pp. 1403–1417. doi: 10.1017/RDC.2022.60. "em" Справочник по климату СССР. Вып. 24. Якутская АССР"/em". Часть 2. Температура воздуха и почвы. 1966. Л. Гидрометеоиздат. 403 с. "em"ru.climate-data"/em".org Исаченко А.Г. Ландшафты СССР Л.: Изд-во ЛГУ, 1985. 320 с. Pesterev A.P., Vasilyeva A.I., Ammosova M.N., Sobolev D.B. Unexplored soils of the Western Yakutia // "em"IOP Conf. Series: Materials Science and Engineering."/em" 2018. Vol. 463. 022001. doi: 10.1088/1757-899X/463/2/022001. "em"IUSS Working Group WRB Update"/em" 2015. World reference base for soil resources 2014. International soil classification system for naming soil and creating legends for soil maps. World Soil Resources Reports No. 106. FAO. Rome, 181 p. Саввинов Г.Н., Данилов П.П., Петров А.А., Макаров В.С., Боескоров В.С., Григорьев С.Е. Экологические проблемы Верхоянского района // "em"Вестник Северо-Восточного федерального университета им. М.К. Аммосова"/em", 2018, № 6 (68). C. 18–33. "em"Геологическая карта Q-53-III,IV"/em" (м-ба 1:200 000). ВСЕГЕИ им. Карпинского, 2018. Geological map Q-53-III, IV (scale 1:200 000). VSEGEI named after Karpinsky, 2018. Васильчук Ю.К., Буданцева Н.А., Васильчук А.К., Подборный Е.Е., Чижова Ю.Н. Пластовые льды в голоценовых отложениях Западной Сибири // "em"Криосфера Земли."/em" 2016. №1. С. 36–50. Салтыков А. В., Балыкин С. Н., Балыкин Д. Н., Горбачев И. В. Ионный состав снежного покрова на территории Сибири и Дальнего Востока // Лед и снег. 2024. №2. С. 262–272. doi: 10.31857/S2076673424020092.
Supplementary files
