On the Convergence Rate of Continuous Newton Method


Cite item

Abstract

In this paper, we study the convergence of continuous Newton method for solving nonlinear equations with holomorphic mappings in complex Banach spaces. Our contribution is based on a recent progress in the geometric theory of spirallike functions. We prove convergence theorems and illustrate them by numerical simulations.

About the authors

Aviv Gibali

Ort Braude College

Email: avivg@braude.ac.il
Karmiel, Israel

David Shoikhet

Ort Braude College

Email: davs@braude.ac.il
Karmiel, Israel

Nikolai Tarkhanov

University of Potsdam

Email: tarkhanov@math.uni-potsdam.de
Potsdam, Germany

References

  1. Гавурин М. К. Нелинейные функциональные уравнения и непрерывные аналоги итерационных методов// Изв. вузов. Сер. Мат. - 1958. - 5.- С. 18-31.
  2. Голузин Г. М. Геометрическая теория функций комплексного переменного. - М.: Наука, 1966.
  3. Далецкий Ю. Н., Крейн М. Г. Устойчивость решений дифференциальных уравнений в банаховых пространствах. - М.: Наука, 1970.
  4. Airapetyan R. G. Continuous Newton method and its modi cation// Appl. Anal. - 1999. - 1. - С. 463- 484.
  5. Airapetyan R. G., Ramm A. G., Smirnova A. B. Continuous analog of the Gauss-Newton method// Math. Methods Appl. Sci. - 1999. - 9. - С. 1-13.
  6. Heath L. F., Su ridge T. J. Holomorphic retracts in complex n-space// Illinois J. Math. - 1981. - 25.- С. 125-135.
  7. Kantorovich L., Akilov G. Functional analysis in normed spaces. - New York: The Macmillan Co., 1964.
  8. Kresin G., Maz’ya V. G. Sharp real-part theorems. A uni ed approach. - Berlin: Springer, 2007.
  9. Lutsky Ya. Continuous Newton method for star-like functions// Electron. J. Di er. Equ. Conf. - 2005. - 12. - С. 79-85.
  10. Marx A. Untersuchungen u¨ ber schlichte Abbildungen// Math. Ann. - 1933. - 107, № 1. - С. 40-67.
  11. Milano F. Continuous Newton’s method for power ow analysis// IEEE Trans. Power Syst. - 2009. - 24. - С. 50-57.
  12. Neuberger J. W. A sequence of problems on semigroups. - New York: Springer, 2011.
  13. Ortega J. M., Rheinboldt W. C. Iterative solution of nonlinear equations in several variables. - New York- London: Academic Press, 1970.
  14. Reich S., Shoikhet D. Nonlinear semigroups, xed points, and geometry of domains in Banach spaces. - London: Imperial College Press, 2005.
  15. Siskakis A. G. Semigroups of composition operators on spaces of analytic functions, a review// Contemp. Math. - 1998. - 213. - С. 229-252.
  16. Strohha¨ cker E. Beitra¨ge zur Theorie der schlichiten Functionen// Math. Z. - 1933. - 37. - С. 356-380.
  17. Su ridge T. J. Starlike and convex maps in Banach spaces// Paci c J. Math. - 1973. - 46. - С. 575-589.
  18. Su ridge T. J. Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions// Lecture Notes Math. - 1976. - 599. - С. 146-159.
  19. Yosida K. Functional analysis. - Berlin-New York: Springer, 1980.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).