Предикторы летального исхода COVID-19 у пациентов отделения интенсивной терапии
- Авторы: Губайдуллина О.В.1, Алексанкин А.В.1
-
Учреждения:
- ФГБОУ ВО «Самарский государственный медицинский университет»
- Выпуск: Том 24, № 2 (2024)
- Страницы: 11-20
- Раздел: ИНФЕКЦИОННЫЕ БОЛЕЗНИ
- URL: https://ogarev-online.ru/2410-3764/article/view/280509
- DOI: https://doi.org/10.35693/AVP626365
- ID: 280509
Цитировать
Полный текст
Аннотация
Цель – выявление потенциальных независимых рутинных лабораторных предикторов летального исхода от COVID-19 у пациентов в критическом состоянии, поступивших в отделения интенсивной терапии.
Материал и методы. В моноцентровое исследование были включены 120 взрослых пациентов с COVID-19 в критическом состоянии, поступивших в отделение интенсивной терапии Самарской областной клинической больницы имени В.Д. Середавина с 1 августа по 31 октября 2021 года. Были собраны данные по демографическим данным, компьютерной томографии грудной клетки, эхокардиографии, УЗИ вен нижних конечностей, лабораторным исследованиям при поступлении в отделение интенсивной терапии и клиническим результатам. Данные лабораторных исследований выживших и умерших пациентов сравнивались с целью выявления факторов риска летальности. Для изучения связи различных лабораторных параметров со смертностью был проведен одновариантный и многовариантный логистический регрессионный анализ.
Результаты. В результате нашего исследования мы получили модель множественной логистической регрессии, позволяющую прогнозировать летальные исходы (AUC=0,820) с относительно высокой чувствительностью (85%) и специфичностью (85%). По нашей модели повышенные ЛДГ (ОШ, 0,99; 95% ДИ, 0,99-1,2), мочевины (ОШ, 0,82; 95% ДИ, 0,68-0,96), глюкозы (ОШ, 0,99; 95% ДИ, 0,84-1,15), АСАТ (ОШ, 0,97; 95% ДИ, 0,94-0,99), а также лимфопения (количество лимфоцитов <3,00 × 109/л, ОШ, 2,53; 95% ДИ, 0,99-6,93) были прогностическими для летального исхода больных COVID в критическом состоянии. Кроме того, пожилой возраст, высокий процент поражения легких по данным КТ и низкий сердечный выброс также были связаны с высоким риском смертности.
Заключение. Уровни ЛДГ, мочевины, АСАТ, глюкозы и лимфоцитов у пациентов с COVID-19 при поступлении в отделение интенсивной терапии должны рассматриваться врачами как независимые предикторы отрицательного исхода.
Полный текст
Открыть статью на сайте журналаОб авторах
О. В. Губайдуллина
ФГБОУ ВО «Самарский государственный медицинский университет»
Email: manovaolesya@yandex.ru
ORCID iD: 0000-0002-4871-3013
врач анестезиолог-реаниматолог
Россия, СамараА. В. Алексанкин
ФГБОУ ВО «Самарский государственный медицинский университет»
Автор, ответственный за переписку.
Email: aleksankin10@mail.ru
ORCID iD: 0000-0003-4518-9233
заведующий отделением анестезиологии и реанимации №2
Россия, СамараСписок литературы
- WHO Director-General’s opening remarks at the media briefing on COVID19 -March 2020. URL: https://www.who.int/
- Coronavirus Cases, Retrieved December 22, 2020. URL: https://www.worldometers.info/coronavirus/
- Soneji S, Beltrán-Sánchez H, Yang JW, Mann C. Population-level mortality burden from novel coronavirus (COVID-19) in Europe and North America. Genus. 2021;77(1):7. DOI: https://doi.org/10.1186/s41118-021-00115-9
- Simonsen L, Viboud C. A comprehensive look at the COVID-19 pandemic death toll. Elife. 2021;10:e71974. DOI: https://doi.org/10.7554/eLife.71974
- Wei C, Lee CC, Hsu TC, et al. Correlation of population mortality of COVID-19 and testing coverage: a comparison among 36 OECD countries. Epidemiol Infect. 2020;149:e1. DOI: https://doi.org/10.1017/S0950268820003076
- da Rosa Mesquita R, Francelino Silva Junior LC, Santos Santana FM, et al. Clinical manifestations of COVID-19 in the general population: systematic review. Wien Klin Wochenschr. 2021;133(7-8):377-382. DOI: https://doi.org/10.1007/s00508-020-01760-4
- Kutsuna S. Clinical Manifestations of Coronavirus Disease 2019. JMA J. 2021;15;4(2):76-80. DOI: https://doi.org/10.31662/jmaj.2021-0013
- Al-Swiahb JN, Motiwala MA. Upper respiratory tract and otolaryngological manifestations of coronavirus disease 2019 (COVID-19): A systemic review. SAGE Open Med. 2021;9:20503121211016965. DOI: https://doi.org/10.1177/20503121211016965
- Arentz M, Yim E, Klaff L, et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020;323(16):1612-1614. DOI: https://doi.org/10.1001/jama.2020.4326
- Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. DOI: https://doi.org/10.1016/S0140-6736(20)30566-3
- Auld SC, Harrington KRV, Adelman MW, et al. Emory COVID-19 Quality and Clinical Research Collaborative. Trends in ICU Mortality From Coronavirus Disease 2019: A Tale of Three Surges. Crit Care Med. 2022;50(2):245-255. DOI: https://doi.org/10.1097/CCM.0000000000005185
- Zhang JJY, Lee KS, Ang LW, et al. Risk Factors for Severe Disease and Efficacy of Treatment in Patients Infected With COVID-19: A Systematic Review, Meta-Analysis, and Meta-Regression Analysis. Clin Infect Dis. 2020;71(16):2199-2206. DOI: https://doi.org/10.1093/cid/ciaa576
- Li J, He X, Yuan Yuan, et al. Meta-analysis investigating the relationship between clinical features, outcomes, and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia. Am J Infect Control. 2021;49(1):82-89. DOI: https://doi.org/10.1016/j.ajic.2020.06.008
- Lu L, Zhong W, Bian Z, et al. A comparison of mortality-related risk factors of COVID-19, SARS, and MERS: A systematic review and meta-analysis. J Infect. 2020;81(4):e18-e25. DOI: https://doi.org/10.1016/j.jinf.2020.07.002
- Henry B, Cheruiyot I, Vikse J, et al. Lymphopenia and neutrophilia at admission predicts severity and mortality in patients with COVID-19: a meta-analysis. Acta Biomed. 2020;91(3):e2020008. DOI: https://doi.org/10.23750/abm.v91i3.10217
- Moutchia J, Pokharel P, Kerri A, et al. Clinical laboratory parameters associated with severe or critical novel coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. PLoS One. 2020;15(10):e0239802. DOI: https://doi.org/10.1371/journal.pone.0239802
- Israfil SMH, Sarker MMR, Rashid PT, et al. Clinical Characteristics and Diagnostic Challenges of COVID-19: An Update From the Global Perspective. Front Public Health. 2021;8:567395. DOI: https://doi.org/10.3389/fpubh.2020.567395
- Poly TN, Islam MM, Yang HC, et al. Obesity and Mortality Among Patients Diagnosed With COVID-19: A Systematic Review and Meta-Analysis. Front Med (Lausanne). 2021;8:620044. DOI: https://doi.org/10.3389/fmed.2021.620044
- Sharma J, Rajput R, Bhatia M, et al. Clinical Predictors of COVID-19 Severity and Mortality: A Perspective. Front Cell Infect Microbiol. 2021;11:674277. DOI: https://doi.org/10.3389/fcimb.2021.674277
- Shi S, Qin M, Shen B, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-810. DOI: https://doi.org/10.1001/jamacardio.2020.0950
- Grasselli G, Zangrillo A, Zanella A, et al. COVID-19 Lombardy ICU Network. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574-1581. DOI: https://doi.org/10.1001/jama.2020.5394
- Sattar N, Valabhji J. Obesity as a Risk Factor for Severe COVID-19: Summary of the Best Evidence and Implications for Health Care. Curr Obes Rep. 2021;10(3):282-289. DOI: https://doi.org/10.1007/s13679-021-00448-8
- Gerayeli FV, Milne S, Cheung C, et al. COPD and the risk of poor outcomes in COVID-19: A systematic review and meta-analysis. E Clinical Medicine. 2021;33:100789. DOI: https://doi.org/10.1016/j.eclinm.2021.100789
- Harrison SL, Buckley BJR, Rivera-Caravaca JM, et al. Cardiovascular risk factors, cardiovascular disease, and COVID-19: an umbrella review of systematic reviews. Eur Heart J Qual Care Clin Outcomes. 2021;7(4):330-339. DOI: https://doi.org/10.1093/ehjqcco/qcab029
- Park BE, Lee JH, Park HK, et al. Daegu COVID-19 Research Project. Impact of Cardiovascular Risk Factors and Cardiovascular Diseases on Outcomes in Patients Hospitalized with COVID-19 in Daegu Metropolitan City. J Korean Med Sci. 2021;36(2):e15. DOI: https://doi.org/10.3346/jkms.2021.36.e15
- Norouzi M, Norouzi S, Ruggiero A, et al. Type-2 Diabetes as a Risk Factor for Severe COVID-19 Infection. Microorganisms. 2021;9(6):1211. DOI: https://doi.org/10.3390/microorganisms9061211
- Gangadharan C, Ahluwalia R, Sigamani A. Diabetes and COVID-19: Role of insulin resistance as a risk factor for COVID-19 severity. World J Diabetes. 2021;12(9):1550-1562. DOI: https://doi.org/10.4239/wjd.v12.i9.155
- Du Y, Zhou N, Zha W, Lv Y. Hypertension is a clinically important risk factor for critical illness and mortality in COVID-19: A meta-analysis. Nutr Metab Cardiovasc Dis. 2021;31(3):745-755. DOI: https://doi.org/10.1016/j.numecd.2020.12.009
- Li G, Xu F, Yin X, et al. Lactic dehydrogenase-lymphocyte ratio for predicting prognosis of severe COVID-19. Medicine (Baltimore). 2021;100(4):e24441. DOI: https://doi.org/10.1097/MD.0000000000024441
- Smilowitz NR, Kunichoff D, Garshick M, et al. C-reactive protein and clinical outcomes in patients with COVID-19. Eur Heart J. 2021;42(23):2270-2279. DOI: https://doi.org/10.1093/eurheartj/ehaa110
- Hansrivijit P, Gadhiya KP, Gangireddy M, Goldman JD. Risk Factors, Clinical Characteristics, and Prognosis of Acute Kidney Injury in Hospitalized COVID-19 Patients: A Retrospective Cohort Study. Medicines (Basel). 2021;8(1):4. DOI: https://doi.org/10.3390/medicines8010004
- Martínez-Urbistondo M, Gutiérrez-Rojas Á, Andrés A, et al. Severe Lymphopenia as a Predictor of COVID-19 Mortality in Immunosuppressed Patients. J Clin Med. 2021;10(16):3595. DOI: https://doi.org/10.3390/jcm10163595
- Al-Samkari H, Karp Leaf RS, Dzik WH, et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020;136(4):489-500. DOI: https://doi.org/10.1182/blood.2020006520
- 34. Basheer M, Saad E, Hagai R, Assy N. Clinical Predictors of Mortality and Critical Illness in Patients with COVID-19 Pneumonia. Metabolites. 2021;11(10):679. DOI: https://doi.org/10.3390/metabo11100679
- Gallo Marin B, Aghagoli G, Lavine K, et al. Predictors of COVID-19 severity: A literature review. Rev Med Virol. 2021;31(1):1-10. DOI: https://doi.org/10.1002/rmv.2146
- Obando-Pereda G. Can molecular mimicry explain the cytokine storm of SARS-CoV-2?: An in silico approach. J Med Virol. 2021;93(9):5350-5357. DOI: https://doi.org/10.1002/jmv.27040
- Mehta P, Fajgenbaum DC. Is severe COVID-19 a cytokine storm syndrome: a hyperinflammatory debate. Curr Opin Rheumatol. 2021;33(5):419-430. DOI: https://doi.org/10.1097/BOR.0000000000000822
- Deng H, Tang TX, Chen D, et al. Endothelial Dysfunction and SARS-CoV-2 Infection: Association and Therapeutic Strategies. Pathogens. 2021;10(5):582. DOI: https://doi.org/10.3390/pathogens10050582
- Jiang H, Mei YF. SARS-CoV-2 Spike Impairs DNA Damage Repair and Inhibits V(D)J Recombination In Vitro. Viruses. 2021;13(10):2056. DOI: https://doi.org/10.3390/v13102056
- Maruhashi T, Higashi Y. Pathophysiological Association of Endothelial Dysfunction with Fatal Outcome in COVID-19. Int J Mol Sci. 2021;22(10):5131. DOI: https://doi.org/10.3390/ijms22105131
- Migliorini F, Torsiello E, Spiezia F, et al. Association between HLA genotypes and COVID-19 susceptibility, severity and progression: a comprehensive review of the literature. Eur J Med Res. 2021;26(1):84. DOI: https://doi.org/10.1186/s40001-021-00563-1
- Naemi FMA, Al-Adwani S, Al-Khatabi H, Al-Nazawi A. Association between the HLA genotype and the severity of COVID-19 infection among South Asians. J Med Virol. 2021;93(7):4430-4437. DOI: https://doi.org/10.1002/jmv.27003
- Sen SR, Sanders EC, Santos AM, et al. Evidence for Deleterious Antigenic Imprinting in SARS-CoV-2 Immune Response. bioRxiv [Preprint]. 2021:2021.05.21.445201. DOI: https://doi.org/10.1101/2021.05.21.445201
- Aydillo T, Rombauts A, Stadlbauer D, et al. Immunological imprinting of the antibody response in COVID-19 patients. Nat Commun. 2021;12(1):3781. DOI: https://doi.org/10.1038/s41467-021-23977-1
- Koneru G, Batiha GE, Algammal AM, et al. BCG Vaccine-Induced Trained Immunity and COVID-19: Protective or Bystander? Infect Drug Resist. 2021;14:1169-1184. DOI: https://doi.org/10.2147/IDR.S300162
- Sohrabi Y, Dos Santos JC, Dorenkamp M, et al. Trained immunity as a novel approach against COVID-19 with a focus on Bacillus Calmette-Guérin vaccine: mechanisms, challenges and perspectives. Clin Transl Immunology. 2020;9(12):e1228. DOI: https://doi.org/10.1002/cti2.1228
- Debisarun PA, Gössling KL, Bulut O, et al. Induction of trained immunity by influenza vaccination - impact on COVID-19. PLoS Pathog. 2021;17(10):e1009928. DOI: https://doi.org/10.1371/journal.ppat.1009928
- Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26(6):842-844. DOI: https://doi.org/10.1038/s41591-020-0901-9
- Vázquez-Jiménez A, Avila-Ponce De León UE, Matadamas-Guzman M, et al. On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers. Front Immunol. 2021;12:705646. DOI: https://doi.org/10.3389/fimmu.2021.705646
- Otsuka R, Seino KI. Macrophage activation syndrome and COVID-19. Inflamm Regen. 2020;40:19. DOI: https://doi.org/10.1186/s41232-020-00131-w
- Iqubal A, Hoda F, Najmi AK, Haque SE. Macrophage Activation and Cytokine Release Syndrome in COVID-19: Current Updates and Analysis of Repurposed and Investigational Anti-Cytokine Drugs. Drug Res (Stuttg). 2021;71(4):173-179. DOI: https://doi.org/10.1055/a-1291-7692
- Ackermann M, Anders HJ, Bilyy R, et al. Patients with COVID-19: in the dark-NETs of neutrophils. Cell Death Differ. 2021;28(11):3125-3139. DOI: https://doi.org/10.1038/s41418-021-00805-z
- Borges L, Pithon-Curi TC, Curi R, Hatanaka E. COVID-19 and Neutrophils: The Relationship between Hyperinflammation and Neutrophil Extracellular Traps. Mediators Inflamm. 2020;2020:8829674. DOI: https://doi.org/10.1155/2020/8829674
- Tan C, Li S, Liang Y, Chen M, Liu J. SARS-CoV-2 viremia may predict rapid deterioration of COVID-19 patients. Braz J Infect Dis. 2020;24(6):565-569. DOI: https://doi.org/10.1016/j.bjid.2020.08.010
- Filipovic N, Saveljic I, Hamada K, Tsuda A. Abrupt Deterioration of COVID-19 Patients and Spreading of SARS COV-2 Virions in the Lungs. Ann Biomed Eng. 2020;48(12):2705-2706. DOI: https://doi.org/10.1007/s10439-020-02676-w
- Hoepel W, Chen HJ, Geyer CE, et al. High titers and low fucosylation of early human anti-SARS-CoV-2 IgG promote inflammation by alveolar macrophages. Sci Transl Med. 2021;13(596):eabf8654. DOI: https://doi.org/10.1126/scitranslmed.abf8654
- Bye AP, Hoepel W, Mitchell JL, et al. Aberrant glycosylation of anti-SARS-CoV-2 spike IgG is a prothrombotic stimulus for platelets. Blood. 2021;138(16):1481-1489. DOI: https://doi.org/10.1182/blood.2021011871
Дополнительные файлы
