Predictors of lethal COVID-19 in patients of intensive care unit
- Authors: Gubaidullina O.V.1, Aleksankin A.V.1
-
Affiliations:
- Samara State Medical University
- Issue: Vol 24, No 2 (2024)
- Pages: 11-20
- Section: INFECTIOUS DISEASES
- URL: https://ogarev-online.ru/2410-3764/article/view/280509
- DOI: https://doi.org/10.35693/AVP626365
- ID: 280509
Cite item
Full Text
Abstract
Aim – to identify potential independent routine laboratory predictors of lethal COVID-19 in critically ill patients admitted to the ICU.
Material and methods. This single-centered study included 120 critically ill adult patients with COVID-19 admitted to ICU of the Samara Regional Clinical Hospital named after V.D. Seredavin from August 1 to October 31, 2021. Data on demographics, chest computed tomography, echocardiography, lower extremity venous ultrasound, laboratory tests upon admission to ICU, and clinical outcomes were collected. Data of laboratory tests between survived and deceased patients were compared to identify risk factors of lethality. Univariable and multivariable logistic regression analyses were performed to examine the association of different laboratory parameters with mortality.
Results. As a result of our study, we obtained a multiple logistic regression model that can predict lethal outcomes (AUC=0.820) with relatively high sensitivity (85%) and specificity (85%).
According to our model, elevations in LDH (OR, 0.99; 95% CI, 0.99-1.2), Urea (OR, 0.82; 95% CI, 0.68-0.96), Glucose (OR, 0.99; 95% CI, 0.84-1.15), ASAT (OR, 0.97; 95% CI, 0.94-0.99), and also lymphopenia (lymphocytes count <3.00 × 109/L, OR, 2.53; 95% CI, 0.99-6.93) were predictive for lethal outcome of critically ill COVID-19 patients. Besides, by previously reported data, older age, a high percentage of lung damage on CT, and low heart output also were associated with high mortality risk.
Conclusion. Thus, LDH, Urea, ASAT, Glucose, and lymphocyte levels in COVID-19 patients upon ICU admission should be considered by physicians as independent predictors of the negative outcome.
Full Text
##article.viewOnOriginalSite##About the authors
Olesya V. Gubaidullina
Samara State Medical University
Email: manovaolesya@yandex.ru
ORCID iD: 0000-0002-4871-3013
anesthesiologist-intensive care physician
Russian Federation, SamaraArtem V. Aleksankin
Samara State Medical University
Author for correspondence.
Email: aleksankin10@mail.ru
ORCID iD: 0000-0003-4518-9233
Head of the Department of Anesthesiology and Intensive Care No. 2
Russian Federation, SamaraReferences
- WHO Director-General’s opening remarks at the media briefing on COVID19 -March 2020. URL: https://www.who.int/
- Coronavirus Cases, Retrieved December 22, 2020. URL: https://www.worldometers.info/coronavirus/
- Soneji S, Beltrán-Sánchez H, Yang JW, Mann C. Population-level mortality burden from novel coronavirus (COVID-19) in Europe and North America. Genus. 2021;77(1):7. DOI: https://doi.org/10.1186/s41118-021-00115-9
- Simonsen L, Viboud C. A comprehensive look at the COVID-19 pandemic death toll. Elife. 2021;10:e71974. DOI: https://doi.org/10.7554/eLife.71974
- Wei C, Lee CC, Hsu TC, et al. Correlation of population mortality of COVID-19 and testing coverage: a comparison among 36 OECD countries. Epidemiol Infect. 2020;149:e1. DOI: https://doi.org/10.1017/S0950268820003076
- da Rosa Mesquita R, Francelino Silva Junior LC, Santos Santana FM, et al. Clinical manifestations of COVID-19 in the general population: systematic review. Wien Klin Wochenschr. 2021;133(7-8):377-382. DOI: https://doi.org/10.1007/s00508-020-01760-4
- Kutsuna S. Clinical Manifestations of Coronavirus Disease 2019. JMA J. 2021;15;4(2):76-80. DOI: https://doi.org/10.31662/jmaj.2021-0013
- Al-Swiahb JN, Motiwala MA. Upper respiratory tract and otolaryngological manifestations of coronavirus disease 2019 (COVID-19): A systemic review. SAGE Open Med. 2021;9:20503121211016965. DOI: https://doi.org/10.1177/20503121211016965
- Arentz M, Yim E, Klaff L, et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020;323(16):1612-1614. DOI: https://doi.org/10.1001/jama.2020.4326
- Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. DOI: https://doi.org/10.1016/S0140-6736(20)30566-3
- Auld SC, Harrington KRV, Adelman MW, et al. Emory COVID-19 Quality and Clinical Research Collaborative. Trends in ICU Mortality From Coronavirus Disease 2019: A Tale of Three Surges. Crit Care Med. 2022;50(2):245-255. DOI: https://doi.org/10.1097/CCM.0000000000005185
- Zhang JJY, Lee KS, Ang LW, et al. Risk Factors for Severe Disease and Efficacy of Treatment in Patients Infected With COVID-19: A Systematic Review, Meta-Analysis, and Meta-Regression Analysis. Clin Infect Dis. 2020;71(16):2199-2206. DOI: https://doi.org/10.1093/cid/ciaa576
- Li J, He X, Yuan Yuan, et al. Meta-analysis investigating the relationship between clinical features, outcomes, and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia. Am J Infect Control. 2021;49(1):82-89. DOI: https://doi.org/10.1016/j.ajic.2020.06.008
- Lu L, Zhong W, Bian Z, et al. A comparison of mortality-related risk factors of COVID-19, SARS, and MERS: A systematic review and meta-analysis. J Infect. 2020;81(4):e18-e25. DOI: https://doi.org/10.1016/j.jinf.2020.07.002
- Henry B, Cheruiyot I, Vikse J, et al. Lymphopenia and neutrophilia at admission predicts severity and mortality in patients with COVID-19: a meta-analysis. Acta Biomed. 2020;91(3):e2020008. DOI: https://doi.org/10.23750/abm.v91i3.10217
- Moutchia J, Pokharel P, Kerri A, et al. Clinical laboratory parameters associated with severe or critical novel coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. PLoS One. 2020;15(10):e0239802. DOI: https://doi.org/10.1371/journal.pone.0239802
- Israfil SMH, Sarker MMR, Rashid PT, et al. Clinical Characteristics and Diagnostic Challenges of COVID-19: An Update From the Global Perspective. Front Public Health. 2021;8:567395. DOI: https://doi.org/10.3389/fpubh.2020.567395
- Poly TN, Islam MM, Yang HC, et al. Obesity and Mortality Among Patients Diagnosed With COVID-19: A Systematic Review and Meta-Analysis. Front Med (Lausanne). 2021;8:620044. DOI: https://doi.org/10.3389/fmed.2021.620044
- Sharma J, Rajput R, Bhatia M, et al. Clinical Predictors of COVID-19 Severity and Mortality: A Perspective. Front Cell Infect Microbiol. 2021;11:674277. DOI: https://doi.org/10.3389/fcimb.2021.674277
- Shi S, Qin M, Shen B, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-810. DOI: https://doi.org/10.1001/jamacardio.2020.0950
- Grasselli G, Zangrillo A, Zanella A, et al. COVID-19 Lombardy ICU Network. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574-1581. DOI: https://doi.org/10.1001/jama.2020.5394
- Sattar N, Valabhji J. Obesity as a Risk Factor for Severe COVID-19: Summary of the Best Evidence and Implications for Health Care. Curr Obes Rep. 2021;10(3):282-289. DOI: https://doi.org/10.1007/s13679-021-00448-8
- Gerayeli FV, Milne S, Cheung C, et al. COPD and the risk of poor outcomes in COVID-19: A systematic review and meta-analysis. E Clinical Medicine. 2021;33:100789. DOI: https://doi.org/10.1016/j.eclinm.2021.100789
- Harrison SL, Buckley BJR, Rivera-Caravaca JM, et al. Cardiovascular risk factors, cardiovascular disease, and COVID-19: an umbrella review of systematic reviews. Eur Heart J Qual Care Clin Outcomes. 2021;7(4):330-339. DOI: https://doi.org/10.1093/ehjqcco/qcab029
- Park BE, Lee JH, Park HK, et al. Daegu COVID-19 Research Project. Impact of Cardiovascular Risk Factors and Cardiovascular Diseases on Outcomes in Patients Hospitalized with COVID-19 in Daegu Metropolitan City. J Korean Med Sci. 2021;36(2):e15. DOI: https://doi.org/10.3346/jkms.2021.36.e15
- Norouzi M, Norouzi S, Ruggiero A, et al. Type-2 Diabetes as a Risk Factor for Severe COVID-19 Infection. Microorganisms. 2021;9(6):1211. DOI: https://doi.org/10.3390/microorganisms9061211
- Gangadharan C, Ahluwalia R, Sigamani A. Diabetes and COVID-19: Role of insulin resistance as a risk factor for COVID-19 severity. World J Diabetes. 2021;12(9):1550-1562. DOI: https://doi.org/10.4239/wjd.v12.i9.155
- Du Y, Zhou N, Zha W, Lv Y. Hypertension is a clinically important risk factor for critical illness and mortality in COVID-19: A meta-analysis. Nutr Metab Cardiovasc Dis. 2021;31(3):745-755. DOI: https://doi.org/10.1016/j.numecd.2020.12.009
- Li G, Xu F, Yin X, et al. Lactic dehydrogenase-lymphocyte ratio for predicting prognosis of severe COVID-19. Medicine (Baltimore). 2021;100(4):e24441. DOI: https://doi.org/10.1097/MD.0000000000024441
- Smilowitz NR, Kunichoff D, Garshick M, et al. C-reactive protein and clinical outcomes in patients with COVID-19. Eur Heart J. 2021;42(23):2270-2279. DOI: https://doi.org/10.1093/eurheartj/ehaa110
- Hansrivijit P, Gadhiya KP, Gangireddy M, Goldman JD. Risk Factors, Clinical Characteristics, and Prognosis of Acute Kidney Injury in Hospitalized COVID-19 Patients: A Retrospective Cohort Study. Medicines (Basel). 2021;8(1):4. DOI: https://doi.org/10.3390/medicines8010004
- Martínez-Urbistondo M, Gutiérrez-Rojas Á, Andrés A, et al. Severe Lymphopenia as a Predictor of COVID-19 Mortality in Immunosuppressed Patients. J Clin Med. 2021;10(16):3595. DOI: https://doi.org/10.3390/jcm10163595
- Al-Samkari H, Karp Leaf RS, Dzik WH, et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020;136(4):489-500. DOI: https://doi.org/10.1182/blood.2020006520
- Basheer M, Saad E, Hagai R, Assy N. Clinical Predictors of Mortality and Critical Illness in Patients with COVID-19 Pneumonia. Metabolites. 2021;11(10):679. DOI: https://doi.org/10.3390/metabo11100679
- Gallo Marin B, Aghagoli G, Lavine K, et al. Predictors of COVID-19 severity: A literature review. Rev Med Virol. 2021;31(1):1-10. DOI: https://doi.org/10.1002/rmv.2146
- Obando-Pereda G. Can molecular mimicry explain the cytokine storm of SARS-CoV-2?: An in silico approach. J Med Virol. 2021;93(9):5350-5357. DOI: https://doi.org/10.1002/jmv.27040
- Mehta P, Fajgenbaum DC. Is severe COVID-19 a cytokine storm syndrome: a hyperinflammatory debate. Curr Opin Rheumatol. 2021;33(5):419-430. DOI: https://doi.org/10.1097/BOR.0000000000000822
- Deng H, Tang TX, Chen D, et al. Endothelial Dysfunction and SARS-CoV-2 Infection: Association and Therapeutic Strategies. Pathogens. 2021;10(5):582. DOI: https://doi.org/10.3390/pathogens10050582
- Jiang H, Mei YF. SARS-CoV-2 Spike Impairs DNA Damage Repair and Inhibits V(D)J Recombination In Vitro. Viruses. 2021;13(10):2056. DOI: https://doi.org/10.3390/v13102056
- Maruhashi T, Higashi Y. Pathophysiological Association of Endothelial Dysfunction with Fatal Outcome in COVID-19. Int J Mol Sci. 2021;22(10):5131. DOI: https://doi.org/10.3390/ijms22105131
- Migliorini F, Torsiello E, Spiezia F, et al. Association between HLA genotypes and COVID-19 susceptibility, severity and progression: a comprehensive review of the literature. Eur J Med Res. 2021;26(1):84. DOI: https://doi.org/10.1186/s40001-021-00563-1
- Naemi FMA, Al-Adwani S, Al-Khatabi H, Al-Nazawi A. Association between the HLA genotype and the severity of COVID-19 infection among South Asians. J Med Virol. 2021;93(7):4430-4437. DOI: https://doi.org/10.1002/jmv.27003
- Sen SR, Sanders EC, Santos AM, et al. Evidence for Deleterious Antigenic Imprinting in SARS-CoV-2 Immune Response. bioRxiv [Preprint]. 2021:2021.05.21.445201. DOI: https://doi.org/10.1101/2021.05.21.445201
- Aydillo T, Rombauts A, Stadlbauer D, et al. Immunological imprinting of the antibody response in COVID-19 patients. Nat Commun. 2021;12(1):3781. DOI: https://doi.org/10.1038/s41467-021-23977-1
- Koneru G, Batiha GE, Algammal AM, et al. BCG Vaccine-Induced Trained Immunity and COVID-19: Protective or Bystander? Infect Drug Resist. 2021;14:1169-1184. DOI: https://doi.org/10.2147/IDR.S300162
- Sohrabi Y, Dos Santos JC, Dorenkamp M, et al. Trained immunity as a novel approach against COVID-19 with a focus on Bacillus Calmette-Guérin vaccine: mechanisms, challenges and perspectives. Clin Transl Immunology. 2020;9(12):e1228. DOI: https://doi.org/10.1002/cti2.1228
- Debisarun PA, Gössling KL, Bulut O, et al. Induction of trained immunity by influenza vaccination - impact on COVID-19. PLoS Pathog. 2021;17(10):e1009928. DOI: https://doi.org/10.1371/journal.ppat.1009928
- Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26(6):842-844. DOI: https://doi.org/10.1038/s41591-020-0901-9
- Vázquez-Jiménez A, Avila-Ponce De León UE, Matadamas-Guzman M, et al. On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers. Front Immunol. 2021;12:705646. DOI: https://doi.org/10.3389/fimmu.2021.705646
- Otsuka R, Seino KI. Macrophage activation syndrome and COVID-19. Inflamm Regen. 2020;40:19. DOI: https://doi.org/10.1186/s41232-020-00131-w
- Iqubal A, Hoda F, Najmi AK, Haque SE. Macrophage Activation and Cytokine Release Syndrome in COVID-19: Current Updates and Analysis of Repurposed and Investigational Anti-Cytokine Drugs. Drug Res (Stuttg). 2021;71(4):173-179. DOI: https://doi.org/10.1055/a-1291-7692
- Ackermann M, Anders HJ, Bilyy R, et al. Patients with COVID-19: in the dark-NETs of neutrophils. Cell Death Differ. 2021;28(11):3125-3139. DOI: https://doi.org/10.1038/s41418-021-00805-z
- Borges L, Pithon-Curi TC, Curi R, Hatanaka E. COVID-19 and Neutrophils: The Relationship between Hyperinflammation and Neutrophil Extracellular Traps. Mediators Inflamm. 2020;2020:8829674. DOI: https://doi.org/10.1155/2020/8829674
- Tan C, Li S, Liang Y, Chen M, Liu J. SARS-CoV-2 viremia may predict rapid deterioration of COVID-19 patients. Braz J Infect Dis. 2020;24(6):565-569. DOI: https://doi.org/10.1016/j.bjid.2020.08.010
- Filipovic N, Saveljic I, Hamada K, Tsuda A. Abrupt Deterioration of COVID-19 Patients and Spreading of SARS COV-2 Virions in the Lungs. Ann Biomed Eng. 2020;48(12):2705-2706. DOI: https://doi.org/10.1007/s10439-020-02676-w
- Hoepel W, Chen HJ, Geyer CE, et al. High titers and low fucosylation of early human anti-SARS-CoV-2 IgG promote inflammation by alveolar macrophages. Sci Transl Med. 2021;13(596):eabf8654. DOI: https://doi.org/10.1126/scitranslmed.abf8654
- Bye AP, Hoepel W, Mitchell JL, et al. Aberrant glycosylation of anti-SARS-CoV-2 spike IgG is a prothrombotic stimulus for platelets. Blood. 2021;138(16):1481-1489. DOI: https://doi.org/10.1182/blood.2021011871
Supplementary files
