Retinal vein occlusion: Modern approaches to treatment

Cover Page

Cite item

Full Text

Abstract

  • Retinal vein occlusion (RVO) is the most common retinal vascular disease, it ranks second in terms of severity of retinal damage and prognosis after diabetic retinopathy. The main cause of visual impairment in patients with RVO is the manifestation of macular edema (ME). Persistent ME may block the recovering of visual acuity. The development of new methods of diagnosis and treatment of this pathology has changed approaches to the management of patients with RVO. This review presents the advantages and promising treatment modalities of retinal venous occlusions, it also demonstrates their advantages and disadvantages. Administration of drug treatment in the therapy of RVO is advisable only in the acute period of the disease. Laser coagulation is still the standard treatment for neovascular complications associated with RVO. The necessity of surgical repair remains controversial, since its use can result in severe complications, such as damage to the central retinal artery, perforation of the eye, retinal detachment and traumatic neuropathy. The use of steroids for the treatment of ME is associated with their ability to reduce capillary permeability, however, there is high risk of cataract. Antiangiogenic therapy is effective against pathogenesis of ME in RVO and is a first-line treatment for this disorder. The use of subthreshold microimpulse laser treatment is promising. Possibilities of further improvement and use of combined techniques in the treatment of this pathology are considered.

About the authors

Yulia I. Kukharskaya

S.N. Fyodorov Eye Microsurgery Federal State Institution

Author for correspondence.
Email: yuliakuharskaya@yandex.ru

Postgraduate student, Laser Retinal Surgery Department

Russian Federation, Moscow

Elena V. Ivanova

S.N. Fyodorov Eye Microsurgery Federal State Institution

Email: elena-mntk@yandex.ru

Candidate of Medical Sciences, Ophthalmologist, Laser Retinal Surgery Department

Russian Federation, Moscow

Pavel L. Volodin

S.N. Fyodorov Eye Microsurgery Federal State Institution

Email: volodinpl@mntk.ru

Doctor of Medical Sciences, Head of the Laser Retinal Surgery Department

Russian Federation, Moscow

References

  1. Astakhov SYu, Tultseva SN. Etiological factors of retinal vein occlusion development in young patients. Regional’noe krovosnabzhenie i microcirculacia. 2004;3(4):39–42. (In Russ.)
  2. Beliy YuA, Tereshchenko AV, Popov SN, et al. Experimental substantiation of radial optical neurotomy in central retinal vein occlusion. Fyodorov journal of ophthalmic surgery. 2004;(3):13–17. (In Russ.)
  3. Volodin PL, Zheltov GI, Ivanova EV, Solomin VA. Calibration of the parameters of micropulse mode of the IRIDEX IQ 577 laser by computer simulation and diagnostic methods of eye fundus diagnosis. Modern technologies in ophthalmology. 2017;(1):52–54. (In Russ.)
  4. Zakharov VD, Kashtan OV, Osokin IG. Lazernoe i khirurgicheskoe lechenie iskhodov trombozov retinal’nykh ven. Modern technologies in medicine. 2012;(1):101–107.
  5. Katsnelson LA. Pathology of the retina. Russian Medical Journal. 1999;(3):45–49. (In Russ.)
  6. Tankovskiy VE. Retinal vein occlusion. Мoscow; 2000. (In Russ.)
  7. A randomized clinical trial of early panretinal photocoagulation for ischemic central vein occlusion. The Central Vein Occlusion Study Group N report. Ophthalmology. 1995;102(10): 1434–1444.
  8. Brown DM, Campochiaro PA, Singh RP, et al. Ranibizumab for macular edema following central retinal vein occlusion: Six-month primary end point results of a phase III study. Ophthalmology. 2010;117(6):1124–1133.e1. doi: 10.1016/j.ophtha.2010.02.022
  9. Brown DM, Heier JS, Clark WL, et al. Intravitreal aflibercept injection for macular edema secondary to central retinal vein occlusion: 1-year results from the phase 3 copernicus study. Am J Ophthalmol. 2013;155(3):429–437.e7. doi: 10.1016/j.ajo.2012.09.026
  10. Buyru Özkurt Y, Akkaya S, Aksoy S, Şimşek MH. Comparison of ranibizumab and subthreshold micropulse laser in treatment of macular edema secondary to branch retinal vein occlusion. Eur J Ophthalmol. 2018;28(6):690–696. doi: 10.1177/1120672117750056
  11. Campochiaro PA, Hafiz G, Mir TA, et al. Scatter photocoagulation does not reduce macular edema or treatment burden in patients with retinal vein occlusion: the relate trial. Ophthalmology. 2015;122(7):1426–1437. doi: 10.1016/j.ophtha.2015.04.006
  12. Campochiaro PA, Hafiz G, Shah SM, et al. Ranibizumab for macular edema due to retinal vein occlusions: Implication of vegf as a critical stimulator. Mol Ther. 2008;16(4):791–799. doi: 10.1038/mt.2008.10
  13. Campochiaro PA, Heier JS, Feiner L, et al. Ranibizumab for macular edema following branch retinal vein occlusion: Six-month primary end point results of a phase III study. Ophthalmology. 2010;117(6):1102–1112.e1. doi: 10.1016/j.ophtha.2010.02.021
  14. Campochiaro PA, Sophie R, Pearlman J, et al. Long-term outcomes in patients with retinal vein occlusion treated with ranibizumab: the RETAIN study. Ophthalmology. 2014;121(1):209–219. doi: 10.1016/j.ophtha.2013.08.038
  15. Campochiaro PA, Wykoff CC, Singer M, et al. Monthly versus as-needed ranibizumab injections in patients with retinal vein occlusion: the SHORE study. Ophthalmology. 2014;121(12):2432–2442. doi: 10.1016/j.ophtha.2014.06.011
  16. Cao W, Cui H, Biskup E. Combination of grid laser photocoagulation and a single intravitreal ranibizumab as an efficient and cost-effective treatment option for macular edema secondary to branch retinal vein occlusion. Rejuvenation Res. 2019;22(4):335–341. doi: 10.1089/rej.2018.2141
  17. Chen Y, Chen QS, Luo H, et al. Subthreshold micropulse laser photocoagulation with intravitreous anti-VEGF for macular edema secondary to branch retinal vein occlusion. Int Eye Sci. 2017;17(6):1184–1187. doi: 10.3980/j.issn.1672-5123.2017.6.48
  18. Donati S, Barosi P, Bianchi M, et al. Combined intravitreal bevacizumab and grid laser photocoagulation for macular edema secondary to branch retinal vein occlusion. Eur J Ophthalmol. 2012;22(4):607–614. doi: 10.5301/ejo.5000085
  19. Dorin G. Evolution of retinal laser therapy: minimum intensity photocoagulation (MIP) can the laser heal the retina without harming it? Semin Ophthalmol. 2004;19(1-2):62–68. doi: 10.1080/08820530490884173
  20. Flynn HW, Jr, Scott IU. Intravitreal triamcinolone acetonide for macular edema associated with diabetic retinopathy and venous occlusive disease: it’s time for clinical trials. Arch Ophthalmol. 2005;123(2):258–259. doi: 10.1001/archopht.123.2.258
  21. Glacet-Bernard A, Coscas G, Chabanel A, et al. A randomized, double-masked study on the treatment of retinal vein occlusion with troxerutin. Am J Ophthalmol. 1994;118(4):421–429. doi: 10.1016/S0002-9394(14)75791-5
  22. Goel S, Kumar A, Ravani R, et al. Comparison of ranibizumab alone versus ranibizumab with targeted retinal laser for branch retinal vein occlusion with macular edema. Indian J Ophthalmol. 2019;67(7):1105–1108. doi: 10.4103/ijo.IJO_1364_18
  23. Hayreh SS. Radial optic neurotomy for non-ischemic central retinal vein occlusion. Arch Ophthalmol. 2004;122(10):1572–1573. doi: 10.1001/archopht.122.10.1572-b
  24. Heier JS, Campochiaro PA, YauL, et al. Ranibizumab for macular edema due to retinal vein occlusions: long-term follow-up in the HORIZON trial. Ophthalmology. 2012;119(4):802–809. doi: 10.1016/j.ophtha.2011.12.005
  25. Houtsmuller AJ, Vermeulen JA, Klompe M, et al. The influence of ticlopidine on the natural course of retinal vein occlusion. Agents Actions Suppl. 1984;15:219–217.
  26. Inagaki K, Shuo T, Katakura K, et al. Sublethal photothermal stimulation with a Micropulse laser induces heat shock protein expression in ARPE-19 cells. J Ophthalmol. 2015;2015:729792. doi: 10.1155/2015/729792
  27. Jeanneteau F, Garabedian MJ, Chao MV. Activation of Trk neurotrophin receptors by glucocorticoids provides a neuroprotective effect. Proc Natl Acad Sci USA. 2008;105(12):4862–4867. doi: 10.1073/pnas.0709102105
  28. Korobelnik JF, Holz FG, Roider J, et al. GALILEO Study Group. Intravitreal aflibercept injection for macular edema resulting from central retinal vein occlusion: one-year results of the phase 3 galileo study. Ophthalmology. 2014;121(1):202–208. doi: 10.1016/j.ophtha.2013.08.012
  29. Korobelnik JF, Kodjikian L, Delcourt C, et al. Two year, prospective, multicenter study of the use of dexamethasone intravitreal implant for treatment of macular edema secondary to retinal vein occlusion in the clinical setting in France. Graefes Arch Clin Exp Ophthalmol. 2016;254(12):2307–2318. doi: 10.1007/s00417-016-3394-y
  30. Kurimoto M, Takagi H, Suzuma K. Vitrectomy for macular edema secondary to retinal vein occlusion: evaluation by the retinal thickness analyzer. Jpn J Clin Ophthalmol. 1999;53:717–720.
  31. Larsen M, Waldstein SM, Boscia F, et al. CRYSTAL Study Group. Individualized ranibizumab regimen driven by stabilization criteria for central retinal vein occlusion: twelve-month results of the crystal study. Ophthalmology. 2016;123(5):1101–1111. doi: 10.1016/j.ophtha.2016.01.011
  32. Lazo-Langner A, Hawel J, Ageno W, Kovacs MJ. Low molecular weight heparin for the treatment of retinal vein occlusion: a systematic review and meta-analysis of randomized trial. Haematologica. 2010;95(9):1587–1593. doi: 10.3324/haematol.2010.023614
  33. Leizaola-Fernandez C, Suarez-Tata L, Quiroz-Mercado H, et al. Vitrectomy with complete posterior hyaloid removal for ischemic central retinal vein occlusion: series of cases. BMC Ophthalmol. 2005;5:10. doi: 10.1186/1471-2415-5-10
  34. Luttrull JK, Dorin G. Subthreshold diode micropulse laser photocoagulation (SDM) as invisible retinal phototherapy for diabetic macular edema: a review. Curr Diabetes Rev. 2012;8(4):274–84. doi: 10.2174/157339912800840523
  35. McAllister IL, Yu DY, Vijayasekaran S, et al. Induced chorioretinal venous anastomosis in experimental retinal branch vein occlusion. Br J Ophthalmol. 1992;76(10):615–620. doi: 10.1136/bjo.76.10.615
  36. Mester U, Dillinger P. Vitrectomy with arteriovenous decompression and internal limiting membrane dissection in branch retinal vein occlusion. Retina. 2002;22(6):740–746. doi: 10.1097/00006982-200212000-00009
  37. Moisseiev E, Goldstein M, Waisbourd M, et al. Long-term evaluation of patients treated with dexamethasone intravitreal implant for macular edema due to retinal vein occlusion. Eye (Lond). 2013;27(1):65–71. doi: 10.1038/eye.2012.226
  38. Murakami T, Takagi H, Kita M, et al. Intravitreal tissue plasminogen activator to treat macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2006;142(2):318–320. doi: 10.1016/j.ajo.2006.02.039
  39. Nishijima K, Yin-Shan N, Zhog L, et al. Vascular endothelial growth factorA is a survival factor for retinal neuros and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Phatol. 2007;171(1):53–67. doi: 10.2353/ajpath.2007.061237
  40. Noma H, Funatsu H, Yamasaki M, et al. Pathogenesis of macular edema with branch retinal vein occlusion and intraocular levels of vascular endothelial growth factor and interleukin-6. Am J Ophthalmol. 2005;140(2):256–261. doi: 10.1016/j.ajo.2005.03.003
  41. Noma H, Mimura T, Eguchi S. Association of inflammatory factors with macular edema in branch retinal vein occlusion. JAMA Ophthalmol. 2013;131(2):160–165. doi: 10.1001/2013.jamaophthalmol.228
  42. Opremcak EM, Bruce RA. Surgical decompression of branch retinal vein occlusion via arteriovenous crossing sheathotomy: a prospective review of 15 cases. Retina. 1999;19(1):1–5. doi: 10.1097/00006982-199901000-00001
  43. Opremcak ME, Bruce RA, Lomeo MD, et al. Radial optic neurotomy for central retinal vein occlusion. Retina. 2001;21(5):408–415. doi: 10.1097/00006982-200110000-00002
  44. Osterloh MD, Charles S. Surgical decompression of branch retinal vein occlusion. Arch Ophthalmol. 1988;106(10): 1469–1471. doi: 10.1001/archopht.1988.01060140633037
  45. Parodi MB, Iacono P, Bandello F. Subthreshold grid laser versus intravitreal bevacizumab as second-line therapy for macular edema in branch retinal vein occlusion recurring after conventional grid laser treatment. Graefes Arch Clin Exp Ophthalmol. 2015;253(10):1647–1651. doi: 10.1007/s00417-014-2845-6
  46. Patz A. Argon laser photocoagulation for macular edema in branch vein occlusion. Am J Ophthalmol. 1984;98(3):374–375. doi: 10.1016/0002-9394(84)90331-3
  47. Pe’er J, Folberg R, Itin A, et al. Vascular endothelial growth factor upregulation in human central retinal vein occlusion. Ophthalmology. 1998;105(3):412–416. doi: 10.1016/S0161-6420(98)93020-2
  48. Schmidt-Erfurth U, Garcia-Arumi J, Gerendasa BS, et al. Guidelines for the Management of Retinal Vein Occlusion by the European Society of Retina Specialists (EURETINA). Ophthalmologica. 2019;242(3):123–162. doi: 10.1159/000502041
  49. Scott IU, Ip MS, Van Veldhuisen PC, et al. SCORE Study Research Group. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with standard care to treat vision loss associated with macular Edema secondary to branch retinal vein occlusion: the Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) study report 6. Arch Ophthalmol. 2009;127(9):1115–1128. doi: 10.1001/archophthalmol.2009.233
  50. Scott IU, Van Veldhuisen PC, Ip MS, et al. Effect of bevacizumab vs aflibercept on visual acuity among patients with macular edema due to central retinal vein occlusion: the SCORE2 randomized clinical trial. JAMA. 2017;317(20):2072–2087. doi: 10.1001/jama.2017.4568
  51. Semeraro F, Morescalchi F, Duse S, et al. Pharmacokinetic and Pharmacodynamic Properties of Anti-VEGF Drugs After Intravitreal Injection. Curr Drug Metab. 2015;16(7):572–584. DOI: 10.2174/ 1389200216666151001120831
  52. Shimura M, Yasuda K. Topical bromfenac reduces the frequency of intravitreal bevacizumab in patients with branch retinal vein occlusion. Br J Ophthalmol. 2015;99(2):215–219. doi: 10.1136/bjophthalmol-2013-304720
  53. Song S, Yu X, Zhang P, et al. Combination of Ranibizumab with macular laser for macular edema secondary to branch retinal vein occlusion: one-year results from a randomized controlled double-blind trial. BMC Ophthalmol. 2020;20(1):241. doi: 10.1186/s12886-020-01498-7
  54. Stefánsson E. The therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology. Acta Ophthalmol Scand. 2001;79(5):435–40. doi: 10.1034/j.1600-0420.2001.790502.x
  55. Tadayoni R, Waldstein SM, Boscia F, et al. Sustained benefits of ranibizumab with or without laser in branch retinal vein occlusion: 24-month results of the BRIGHTER study. Ophthalmology. 2017;124(12):1778–87. doi: 10.1016/j.ophtha.2017.06.027
  56. Terashima H, Hasebe H, Okamoto F, et al. Combination therapy of intravitreal ranibizumab and subthreshold micropulse photocoagulation for macular edema secondary to branch retinal vein occlusion. Retina. 2019;39(7):1377–1384. doi: 10.1097/IAE.0000000000002165
  57. The Branch Vein Occlusion Study Group. Argon laser photocoagulation for macular edema in branch vein occlusion. Am J Ophthalmol. 1984;98(3):271–282. doi: 10.1016/0002-9394(84)90316-7
  58. The Central Vein Occlusion Study Group. Natural history and clinical management of central retinal vein occlusion. Arch Ophthalmol. 1997;115(4):486–491. doi: 10.1001/archopht.1997.01100150488006
  59. Vogel A, Holz FG, Loeffler KU. Histopathologic findings after radial optic neurotomy in central retinal vein occlusion. Am J Ophthalmol. 2006;141(1):203–205. doi: 10.1016/j.ajo.2005.07.061
  60. Yamamoto T, Kamei M, Yokoi N, et al. Comparative effect of antiplatelet therapy in retinal vein occlusion evaluated by the particle-counting method using light scattering. Am J Ophthalmol. 2004;138(5):809–817. doi: 10.1016/j.ajo.2004.06.058

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Kukharskaya Y.I., Ivanova E.V., Volodin P.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».