Fuzzy evaluation of the value of shares of the issuer companies on the stock market using the example of Exxon Mobil
- Authors: Dorokhov E.V.1
-
Affiliations:
- Issue: No 1 (2025)
- Pages: 143-153
- Section: Articles
- URL: https://ogarev-online.ru/2409-7802/article/view/372276
- DOI: https://doi.org/10.25136/2409-7802.2024.3.69374
- EDN: https://elibrary.ru/NKQZCQ
- ID: 372276
Cite item
Full Text
Abstract
The subject of the study is the task of determining a reliable valuation of the shares of stock market participants, stock investors, owners and purchasers of companies. The purpose of the work is to evaluate the shares of issuing companies on the stock market for various scenarios. The methodology of the research includes the application of methods of analysis of economic phenomena and processes related to the study of the development of issuing companies, as well as the assessment and forecasting of their economic activities. Fuzzy logic theory is used to model the development of issuing companies. The study of empirical data and identification of trends in the development of issuing companies is based on statistical processing of factual material. The methodology of fuzzy valuation of the shares of issuing companies has been developed, which includes databases of historical quotations and financial and economic indicators, as well as forecast fuzzy scenarios of their development. For the model forecast scenarios (basic and pessimistic), fuzzy estimates of the value of shares and investment indicators of the oil company Exxon Mobil are determined depending on the values of the time forecast stages of its development. The scientific novelty of the article lies in the use of fuzzy scenarios of the evolution of issuing companies, the fuzzy parameters of which make it possible to most adequately reflect the uncertainty of their forecast development. The presented method of fuzzy valuation of the shares of issuing companies may be in demand for practical application not only for stock market participants, owners and purchasers of companies, but also for potential ordinary investors. The results of the article can be used as a theoretical basis for further research in the field of fuzzy valuations of the shares of issuing companies.
About the authors
Evgenii Vladimirovich Dorokhov
Email: e.v.dorokhov@mail.ru
ORCID iD: 0000-0001-7869-4530
References
Демиденко Т. И., Бричка Е.И. Проблемные аспекты практического применения метода дисконтированных денежных потоков при оценке стоимости компании // Финансовые исследования. 2019. № 4 (65). С. 247–257. Россохин В. В. Анализ подходов к фундаментальной оценке стоимости акций // Экономический анализ: теория и практика. 2008. № 6 (111). С. 56–62. Fernandez P. Valuation Methods and Shareholder Value Creation. Academic Press. San Diego, 2002. CA. doi: 10.1016/b978-0-12-253841-4.x5000-8 Campbell J. Y., Shiller R. J. Stock Prices, Earnings, and Expected Dividends // Journal of Finance. 1988. Vol. 43 No. 3. 661–676. Shiller R. Irrational Exuberance. Princeton University Press. Broadway Books 2nd ed., 2005. Недосекин А. О. Фондовый менеджмент в расплывчатых условиях. СПб: Типография Сезам, 2003. Орловский С. А. Проблемы принятия решений при нечеткой информации. М.: Наука, 1981. Markowitz H. M. Portfolio Selection: Efficient Diversification in Investments // Operational Research Society. 1959. Vol. 10. No. 4. 253–254. Дробыш И. И. Современные методы расчета величины Value at Risk при оценке рыночных рисков // Труды ИСА РАН. 2018. № 68(3). С. 51–62. doi: 10.14357/20790279180305 Tursunkhodjaeva S. Z. K. Valuation of shares of real sector enterprises of the republic of Uzbekistan by var method // South Asian Journal of Marketing & Management Research. 2020. Vol. 8. No. 3. 51–61. doi: 10.5958/2249-877X.2020.00083.1 Andersen T. G., Bollerslev T. ARCH and GARCH Models. / In: S. Kotz, C.B. Read, D.L. Banks (editors). Encyclopedia of Statistical Sciences.Vol. II. N. Y.: John Wiley and Sons. 1998. 6–16. doi: 10.1002/0471667196.ESS0592.PUB3 Bera A., Higgins M., Lee S. Interaction between autocorrelation and conditional heteroskedasticity: a random-coefficient approach // Journal of Business & Economic Statistics. 1992. No. 10. 133–142. Nelson D. Conditional heteroskedasticity in asset returns: a new approach // Econometrica. 1991. Vol. 59. No. 2. 347–370. https://doi.org/0012-9682(199103)59:22.0.CO;2-V Sentana E. Quadratic ARCH models // Review of Economic Studies. 1995. Vol. 62. No. 4. 639–661. doi: 10.2307/2298081 Кудрявцева Е.А. Анализ макроэкономических факторов, влияющих на динамику фондового рынка России // Теоретическая экономика. 2021. № 11. С. 96–101. URL: http://www.theoreticaleconomy.ru. doi: 10.52957/22213260_2021_11_96 Теньковская Л.И. Результат свободного ценообразования на фондовом рынке России в неблагоприятных геополитических условиях // Вестник ПНИПУ. Социально-экономические науки. 2022. № 4. С. 192–204. doi: 10.15593/2224-9354/2022.4.14 Daradkeh K. A hybrid data analytics framework with sentiment convergence and multi-feature fusion for stock trend prediction // MDPI Journal of Electronics. 2022. № 11. 1–20. URL: doi.org/10.3390/electronics11020250 Ghosh P., Neufeld A., Sahoo J. Forecasting directional movements of stock prices for intraday trading using LSTM and random forests // Financial Research Letters. 2023. 1–8. URL: doi.org/10.48550/arXiv.2004.10178 Дорохов Е.В. Исследование манипуляций фондовыми активами на примере акций американских высокотехнологичных компаний биржи Nasdaq // Финансы и управление. 2023. № 1. С. 50–68. doi: 10.25136/2409-7802.2023.1.37548 EDN: WBBLRZ URL: https://nbpublish.com/library_read_article.php?id=37548 Zadeh L. A. Fuzzy sets. Information and Control. Vol. 8. 1965. 338–353. Дамодаран А. Инвестиционная оценка: инструменты и методы оценки любых активов. – М: Альпина Паблишер, 2021. Дорохов Е.В. Совершенствование системы статистических показателей оценки состояния и перспектив развития фондового рынка // Вопросы статистики. 2022. 29(1). С. 17–27. URL: https://doi.org/10.34023/2313-6383-2022-29-1-17-27 Официальный сайт Exxon Mobil Corporation (XOM). Financial results. Electronic resource. URL:https://investor.exxonmobil.com/earnings/financial-results (дата обращения: 12.08.2023). Официальный сайт INTERNATIONAL MONETARY FUND. World Economic Outlook Update, July 2023: Near-Term Resilience, Persistent Challenges. Electronic resource. URL: https://www.imf.org/en/Publications/WEO/Issues/2023/07/10/world-economic-outlook-update-july-2023?CID=sm-com-homepage-WEOET2023004 (дата обращения: 12.08.2023). f8k2Q23992. Investor relations data summary. Electronic resource. URL: https://d1io3yog0oux5.cloudfront.net/_fd8756dd88edb070677d017f2e42bbd3/exxonmobil/db/2288/22123/supplement/2Q23+Supplement+Website.pdf (дата обращения: 12.08.2023). Официальный сайт Federal Reserve System. Federal Reserve Board-Federal Reserve issues FOMC statement. Electronic resource. URL: https://www.federalreserve.gov/newsevents/pressreleases/monetary20230726a.htm (дата обращения: 12.08.2023). Официальный сайт NYSE. Exxon Mobil Corporation XOM. Electronic resource. URL: https://www.nyse.com/quote/XNYS:XOM (дата обращения: 12.08.2023). Нефтегазовые компании США, актуализация оценки. Electronic resource. URL: https://sinara-finance.ru/upload/iblock/755/vh4ja3k9aoqjvrw46on05iprsto7q7ff.pdf (дата обращения: 12.08.2023).
Supplementary files

