Artificial Intelligence Technologies in Human Resource Management: Social Experience of Implementation and Use
- Authors: Koval'zhina L.S.1, Orlova A.A.1
-
Affiliations:
- Issue: No 12 (2025)
- Pages: 95-106
- Section: ARTICLES
- URL: https://ogarev-online.ru/2409-7144/article/view/372961
- EDN: https://elibrary.ru/OIUBJD
- ID: 372961
Cite item
Full Text
Abstract
The article discusses the social issues of implementing and using artificial intelligence technologies in human resource management of organizations and enterprises. It addresses experts' expectations and the potential for the adoption of artificial intelligence, as well as the barriers to the implementation of advanced AI functions, which include both technical problems and social ones (the need for a change in corporate culture). The theoretical and methodological foundations of the research are based on a sociological approach that views technologies not as neutral tools but as social artifacts embedded in existing social structures, cultural norms, and organizational practices. The aim of this research is to identify and classify the social problems of implementing and using AI in HR, as well as to assess the current state and prospects of using artificial intelligence technologies in personnel management in companies in the Tyumen region. A fragment of the results of an expert survey of HR specialists and heads of HR departments of companies of various sizes and industry affiliations, conducted in 2024 and 2025 in the Tyumen region, is presented. The analysis revealed that the existing mechanisms of both self-regulation (corporate policies, professional codes) and institutional regulation (legislation) are underdeveloped, fragmentary, and often reactive. They fail to keep pace with the dynamics of technological changes and do not always adequately consider the specifics of the social experiences of various actors involved in digital HR practices. Four main clusters of social problems are identified: algorithmic bias and the reproduction of social inequality; dehumanization of HR processes and erosion of the organization's social capital; violation of privacy and the creation of a "digital copy"; transformation of the HR manager profession and the problem of distributed responsibility. Based on the analysis of the use of AI technologies in personnel management of organizations in the Tyumen region and the study of theoretical concepts of self-regulation and institutional regulation, an integrative model of "Balanced Institutionalization of AI in HR" is proposed. The principles of the model include: the principle of contextual embeddedness and human sovereignty; the principle of algorithmic transparency and accountability; the principle of preventive assessment of social risks; and the principle of pluralistic regulation.
About the authors
Larisa Sergeevna Koval'zhina
Email: kls77@mail.ru
ORCID iD: 0000-0002-1650-1243
Anna Anatol'evna Orlova
Email: orlovaaa@tyuiu.ru
ORCID iD: 0009-0006-1729-0800
References
Бергер, П., Лукман, Т. Социальное конструирование реальности: Трактат по социологии знания / Пер. с англ. Е. Руткевич. М.: МШПИ, 2019. Берсин, Д. HR-технологии 2024: что действительно работает / Д. Берсин // MIT Sloan Management Review. 2024. URL: https://sloanreview.mit.edu/ (дата обращения: 12.10.2025). Зубофф, Ш. Век капитализма наблюдения: Борьба за человеческое будущее на новом рубеже власти / Ш. Зубофф ; [пер. с англ. А. Шоломицкой]. Москва : Издательский дом "Дело" РАНХиГС, 2023. 736 с. Искусственный интеллект в HR: обзор российского рынка // TAdviser. 2024. URL: https://www.tadviser.ru/ (дата обращения: 12.10.2025). Использование искусственного интеллекта в МСП: аналитический отчет / Аналитический центр НАФИ. Москва, 2024. URL: https://nafi.ru/analytics/ (дата обращения: 12.10.2025). Малышев, М. А. Технологии искусственного интеллекта в управлении персоналом / М. А. Малышев // Вестник Московского университета. Серия 21: Управление (государство и общество). 2023. № 4. С. 45-62. Ноубл, С. Алгоритмы угнетения: Как поисковые системы усиливают расизм / Пер. с англ. Е. Байкалов, К. Медведев. М.: Индивидуум, 2022. 272 с. Обзор российского рынка HR-tech решений // РБК. 2024. URL: https://www.rbc.ru/technology_and_media/ (дата обращения: 12.10.2025). Паскуале, Ф. Общество черного ящика: Секретные алгоритмы, которые управляют деньгами и информацией / Пер. с англ. А. Карташов. М.: Карьера Пресс, 2022. 408 с. Российская ассоциация искусственного интеллекта. Аналитический обзор рынка AI-решений. Москва, 2024. URL: http://raai.org/ (дата обращения: 12.10.2025). Шюц, А. Смысловое строение социального мира: Очерки по феноменологической социологии / Пер. с нем. и англ. А.Я. Алхасова, Д.Г. Лахути, Г.И. Белкиной; науч. ред. Н.М. Смирнова. М.: Издательский дом "Дело" РАНХиГС, 2020. 552 с. AI in HR: Benefits and Challenges / PWC. 2024. URL: https://www.pwc.com/ (дата обращения: 12.11.2025). Barocas, S., & Selbst, A. D. Big data's disparate impact. California Law Review, 2016, 104, 671-732. Bodie, M. T., Cherry, M. A., McCormick, M. L., & Tang, J. The law and policy of people analytics. University of Colorado Law Review, 2017, 88, 961-1042. Dastin, J. Amazon scraps secret AI recruiting tool that showed bias against women. Reuters, 2018. European Commission. Proposal for a Regulation laying down harmonised rules on artificial intelligence (Artificial Intelligence Act). Brussels, 2021. Global Human Capital Trends 2024 / Deloitte. 2024. URL: https://www2.deloitte.com/ (дата обращения: 12.10.2025). HR-тренды 2024: аналитический отчет / HeadHunter. Москва, 2024. URL: https://hh.ru/article/research (дата обращения: 12.10.2025). Lee, M. K. Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management. Big Data & Society, 2018, 5(1). Martin, K., Shilton, K., & Smith, J. Business and the ethical implications of technology: Introduction to the symposium. Journal of Business Ethics, 2020, 167(1), 1-6. McAbee, S. T., Landis, R. S., & Burke, M. I. Inductive reasoning: The promise of big data. Human Resource Management Review, 2017, 27(2), 277-290. Möhlmann, M., Zalmanson, L., Henfridsson, O., & Gregory, R. W. Algorithmic management of work on online labor platforms: When matching meets control. MIS Quarterly, 2021, 45(4), 1999-2022. doi: 10.25300/misq/2021/15333 EDN: QYKYWQ. Raisch, S., & Krakowski, S. Artificial intelligence and management: The automation-augmentation paradox. Academy of Management Review, 2021, 46(1), 192-210. doi: 10.5465/amr.2018.0072 EDN: MOPFOP. Strohmeier, S. Digital human resource management: A conceptual clarification. German Journal of Human Resource Management, 2020, 34(3), 345-365. doi: 10.1177/2397002220921131 EDN: JLJMQB. Tambe, P., Cappelli, P., & Yakubovich, V. Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 2019, 61(4), 15-42.
Supplementary files

