The use of artificial intelligence systems in the criminal procedure activities of the prosecutor: advantages and disadvantages

Cover Page

Cite item

Full Text

Abstract

The relevance of this study stems from the growing contradiction between the rapid introduction of artificial intelligence systems into prosecutorial criminal proceedings and the lack of a coherent theoretical and legal model regulating the use of such innovations. This imbalance creates significant risks in the implementation of such fundamental principles of criminal proceedings as legality, adversarial proceedings, and the right to defense. The subject of this study is the complex social relations that develop as prosecutors use artificial intelligence systems in criminal proceedings, as well as the associated legal and organizational issues. The goal of this study is to conduct a comprehensive analysis of the advantages and disadvantages of prosecutors' use of artificial intelligence systems in criminal proceedings and, on this basis, to develop scientifically sound proposals for the formation of legal regulation that ensures a balance between technological efficiency and guarantees of individual rights. The author uses comparative legal analysis of international experience, an empirical analysis of the implementation of an AI assistant in the Saratov Region Prosecutor's Office, and a systems and predictive analysis of various aspects of prosecutors' use of artificial intelligence systems in criminal proceedings. The scientific novelty and practical significance of the study are determined by the nature of the conducted analysis of the advantages and disadvantages of using artificial intelligence systems in the prosecutor's work. The conclusions and proposals are based not only on theoretical research, but also on direct experience in using AI assistants in law enforcement practice. Based on the results of the study, proposals are presented for integrating into the Criminal Procedure Code of the Russian Federation the norms on the legal status of the results of the use of artificial intelligence, the procedure for recording and appealing them. The need to consolidate special requirements for the processing, storage, and transmission of data used for training and in the operation of artificial intelligence systems in criminal proceedings is noted. It is proposed to adopt a law on the use of AI by government agencies, which would establish requirements for the presence of a detailed logical report function in AI systems developed for criminal proceedings; on training government AI systems on verified and up-to-date national databases; on the implementation of mandatory state control.

References

  1. Афанасьев А. Ю. Искусственный интеллект в уголовном процессе // Юридическая техника. 2021. № 15. С. 571-574. EDN: JVJPKG.
  2. Лебедев З. С. Некоторые вопросы применения искусственного интеллекта в уголовном процессе России // Основы экономики, управления и права. 2021. № 4 (29). С. 45-48. doi: 10.51608/23058641_2021_4_45 EDN: SKRSCT.
  3. Веревошников Е. А. Перспективы применения технологий искусственного интеллекта в уголовном судопроизводстве // Юридическая наука и правоохранительная практика. 2025. № 1 (71). С. 59-67. EDN: MOZPRA.
  4. Чурикова А. Ю. Применение искусственного интеллекта и индикаторов риска для противодействия киберпреступности // Российский следователь. 2024. № 5. С. 47-51. doi: 10.18572/1812-3783-2024-5-47-51. EDN: CTVJOV.
  5. Спесивов Н. В. Цифровизация и транспарентность как основы модернизации уголовнопроцессуальной деятельности прокурора // Вестник Университета прокуратуры Российской Федерации. 2023. № 4(96). С. 129-136. EDN: UGMRAX.
  6. Карташов И. И. Искусственный интеллект в уголовном судопроизводстве: потенциал и риски использования // Право в эпоху искусственного интеллекта: перспективные вызовы и современные задачи: сборник научных статей по материалам Международного научно-практического форума, Тюмень, 17-19 октября 2024 года. Тюмень: ТюмГУ-Press, 2024. С. 358-361. EDN: HBCGJQ.
  7. Чурикова А. Ю. Искусственный интеллект в уголовном процессе: возможности и риски использования // Информационное право. 2023. № 4(78). С. 22-25. doi: 10.55291/1999-480X-2023-4-22-25. EDN: JOBZSW.
  8. Использование искусственного интеллекта при выявлении, раскрытии, расследовании преступлений и рассмотрении уголовных дел в суде / Д. В. Бахтеев, Е. А. Буглаева, А. И. Зазулин [и др.]. Москва: Издательство "Юрлитинформ", 2022. 216 с. ISBN 978-5-4396–2315-0. EDN: HNCNFY.
  9. Рябцева Е. В. Проблема использования искусственного интеллекта в уголовном правосудии // Всероссийский криминологический журнал. 2023. Т. 17. № 1. С. 73-80. doi: 10.17150/2500-1442.2023.17(1).73-80 EDN: GTQMIU.
  10. Iliadis A., Acker A. The seer and the seen: Surveying Palantir's surveillance platform // The Information Society. 2022. Vol. 38. № 5. P. 334-363. doi: 10.1080/01972243.2022.2100851 EDN: URAPKE.
  11. Ulbricht L., Egbert S. In Palantir we trust? Regulation of data analysis platforms in public security // Big Data & Society. 2024. Vol. 11. № 3. doi: 10.1177/20539517241255108 EDN: UCELEB.
  12. Knight E., Gekker A. Mapping interfacial regimes of control: Palantir's ICM in America's post-9/11 security technology infrastructures // Surveillance & Society. 2020. Vol. 18. № 2. P. 231-243. doi: 10.24908/ss.v18i2.13268 EDN: FKVMBE.
  13. Banerjee R. Corporate Frauds: Now Bigger, Broader and Bolder. Penguin Random House India Private Limited, 2024.
  14. Tulumello S., Iapaolo F. Policing the future, disrupting urban policy today. Predictive policing, smart city, and urban policy in Memphis (TN) // Urban Geography. 2022. Vol. 43. № 3. P. 448-469. doi: 10.1080/02723638.2021.1887634 EDN: XQWOWK.
  15. Duarte D. E. The making of crime predictions: Sociotechnical assemblages and the controversies of governing future crime // Surveillance & Society. 2021. Vol. 19. № 2. P. 199-215. doi: 10.24908/ss.v19i2.14261 EDN: LNFIUO.
  16. Ohyama T., Amemiya M. Applying crime prediction techniques to Japan: A comparison between risk terrain modeling and other methods // European Journal on Criminal Policy and Research. 2018. Vol. 24. № 4. P. 469-487. doi: 10.1007/s10610-018-9378-1 EDN: TAQONK.
  17. McElreath D. H., DioGuardi S., Doss D. A. Pre-Crime Prediction // International Journal of Service Science, Management, Engineering, and Technology. 2022. Vol. 13. № 1. doi: 10.4018/IJSSMET.298672.
  18. Vaccaro M. A. Algorithms in human decision-making: A case study with the COMPAS risk assessment software. 2019. URL: https://dash.harvard.edu/entities/publication/09126374-044c-457b-9c75-0436c0a84ecf.
  19. McKay C. Predicting risk in criminal procedure: actuarial tools, algorithms, AI and judicial decision-making // Current Issues in Criminal Justice. 2020. Vol. 32. № 1. P. 22-39. doi: 10.1080/10345329.2019.1658694.
  20. Gravett W. Sentenced by an algorithm – Bias and lack of accuracy in risk-assessment software in the United States criminal justice system // Journal of Criminal Justice. 2021. Vol. 34. № 1. P. 31-54. doi: 10.47348/SACJ/v34/i1a2 EDN: XEZLNV.
  21. Wu W., Lin X. Access to technology, access to justice: China's artificial intelligence application in criminal proceedings // International Journal of Law, Crime and Justice. 2025. Vol. 81. P. 100741. doi: 10.1016/j.ijlcj.2025.100741 EDN: AJJZSJ.
  22. Zhiyuan G., Jiajia Y. The Application of Artificial Intelligence in China's Criminal Justice System // Legal Issues in the digital Age. 2025. № 1. P. 83-104. doi: 10.17323/2713-2749.2025.1.83.104 EDN: OQTFGW.
  23. Nazer L. H. et al. Bias in artificial intelligence algorithms and recommendations for mitigation // PLOS digital health. 2023. Vol. 2. № 6. P. e0000278. doi: 10.1371/journal.pdig.0000278 EDN: NDEBSM.
  24. Fazil A. W., Hakimi M., Shahidzay A. K. A comprehensive review of bias in AI algorithms // Nusantara Hasana Journal. 2023. Vol. 3. № 8. P. 1-11. doi: 10.59003/nhj.v3i8.1052 EDN: ETVEWJ.
  25. Bontempi G. Between accurate prediction and poor decision making: the AI/ML gap // International Conference on Machine Learning, Optimization, and Data Science. Cham: Springer Nature Switzerland, 2024. P. 333-343. doi: 10.1007/978-3-031-82481-4_23.
  26. Anand A. S. et al. All AI Models are Wrong, but Some are Optimal // arXiv preprint arXiv:2501.06086. 2025. doi: 10.48550/arXiv.2501.06086.
  27. Palmiotto F. The black box on trial: the impact of algorithmic opacity on fair trial rights in criminal proceedings // Algorithmic Governance and Governance of Algorithms: Legal and Ethical Challenges. Cham: Springer International Publishing, 2020. P. 49-70. doi: 10.1007/978-3-030-50559-2_3.
  28. Minh D. et al. Explainable artificial intelligence: a comprehensive review // Artificial Intelligence Review. 2022. Vol. 55. № 5. P. 3503–3568. doi: 10.1007/s10462-021-10088-y EDN: NVPVSU.
  29. Longo L. et al. Explainable artificial intelligence: Concepts, applications, research challenges and visions // International cross-domain conference for machine learning and knowledge extraction. Cham: Springer International Publishing, 2020. P. 1-16. doi: 10.1007/978-3-030-57321-8_1.
  30. Carrel A. Legal intelligence through artificial intelligence requires emotional intelligence: a new competency model for the 21st century legal professional // Ga. St. UL Rev. 2018. Vol. 35. P. 1153.
  31. Kluttz D. N., Mulligan D. K. Automated decision support technologies and the legal profession // Berkeley technology law journal. 2019. Vol. 34. № 3. P. 853-890.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).