Selection of the geometric shape of the flow path of a remotely controlled valve to minimize its acoustic radiated power of turbulent noise and hydraulic resistance

Cover Page

Cite item

Full Text

Abstract

The article investigates the acoustic power radiation of an isotropic turbulent flow of superheated steam in the flow path of an angle shut-off valve through numerical simulation. The study aims to determine the geometric dimensions of the valve's flow path that minimize the acoustic radiation power into the connected pipeline mains for a given medium velocity in the inlet pipe. Certain parameters of the valve's flow path are subject to design constraints, dictated by the existing component base (bellows with limitations on maximum allowable pressure and compression) and requirements for minimal valve dimensions (particularly the actuator, whose size is determined by the seat diameter). As part of the study, the effectiveness of various measures to modify the base valve design was evaluated through detailed numerical hydrodynamic and acoustic modeling. These measures, aimed at reducing the acoustic power of the flow in the valve, were analyzed both individually and in combination. The authors found that the most effective measures were: changing the lift height of the valve plug and modifying the radial dimensions of the annular cavity between the plug and the bushing. The calculated effectiveness of these measures reaches up to 11 dB. The obtained results are recommended for use in the refinement of shut-off valves in pneumatic and hydraulic systems to reduce the noise they generate.

About the authors

Sergey A. Ponomarev

Samara National Research University

Email: ponomarev.sa@ssau.ru

Research Assistant

Russian Federation, Samara, Russian Federation

Aleksandr N. Kryuchkov

Samara National Research University

Email: kryuchkov.an@ssau.ru

Doctor of Science (Engineering), Professor, Professor of the Department of Automatic Systems of Power Plants

Russian Federation, Samara, Russian Federation

Leonid V. Rodionov

Samara National Research University

Email: rodionov.lv@ssau.ru

Candidate of Science (Engineering), Associate Professor, Associate Professor of the Department of Automatic Systems of Power Plants

Russian Federation, Samara, Russian Federation

Dmitriy M. Stadnik

Samara National Research University

Email: stadnik.dm@ssau.ru

Candidate of Sciences (Engineering), Associate Professor of the Department of Automatic Systems of Power Plants

Russian Federation, Samara, Russian Federation

Mikhail A. Ermilov

Samara National Research University

Author for correspondence.
Email: ermilov.ma@ssau.ru

Candidate of Science (Engineering), Associate Professor of the Department of Automatic Systems of Power Plants

Russian Federation, Samara, Russian Federation

Sofya A. Ponomareva

Самарский национальный исследовательский университет имени академика С. П. Королева

Email: vinogradova.sa@ssau.ru

Research Assistant

Russian Federation, Samara, Russian Federation

References

  1. Vukalovich, M. P. (1967), Teplofizicheskie svoystva vody i vodyanogo para [Thermophysical properties of water and water vapor], Mashinostroenie, Moscow, 160 p. (in Russian).
  2. IEC 60534-8-3 (2000), Noise considerations - Control valve aerodynamic noise prediction method.
  3. Kryuchkov, A. N. (2013), Razrabotka konstruktsii fizicheskikh modeley obraztsov vysokoeffektivnykh ustroystv gasheniya pul'satsiy [Tekst]: otchet o NIR (promezhutoch.: p. 4.1 NIR 201kh-118 «Razrabotka vysokoeffektivnykh universal'nykh ustroystv gasheniya pul'satsiy v linii redutsirovaniya gaza») [Development of the design of physical models of samples of high-efficiency pulsation damping devices: Research report (interim: section 4.1 of research project 201х-118 “Development of high-efficiency universal pulsation damping devices in gas reduction lines”)], Institute of Machine Acoustics at SSAU, Samara, 58 p. (in Russian).
  4. Heckl, M. and Müller, H. A. (eds.) (1980), Spravochnik po tekhnicheskoy akustike [Handbook of technical acoustics], Sudostroenie, Leningrad, (in Russian).
  5. Yudin, E. Y., Rassadina, I. D., Nikolsky, V. N. et al. (1974), Spravochnik proektirovshchika. Zashchita ot shuma [Designer's handbook. Noise protection]. Edited by E. Y. Yudin, Stroyizdat, Moscow, 134 p. (in Russian).
  6. Idelchik, I.E. (1992), Spravochnik po gidravlicheskim soprotivleniyam [Handbook of hydraulic resistance], Mashinostroenie, Moscow, 672 p. (in Russian).
  7. Proudman, I. (1952), “The generation of noise by isotropic turbulence”, Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 214, pp. 119–132.
  8. GOST 34437-2018 (2018), Armatura truboprovodnaya. Metodika eksperimental'nogo opredeleniya gidravlicheskikh i kavitatsionnykh kharakteristik [Pipeline valves. Experimental method for determining hydraulic and cavitation characteristics]. (in Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Ponomarev S.A., Kryuchkov A.N., Rodionov L.V., Stadnik D.M., Ermilov M.A., Ponomareva S.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).