Прогнозирование потребительской активности с использованием методов машинного обучения

Обложка

Цитировать

Полный текст

Аннотация

 

В данной статье рассматривается прогнозирование потребительской активности, а в частности прогнозирование энергопотребления домохозяйств с использованием машинного обучения. Прогнозирование энергопотребления домохозяйств с использованием машинного обучения — это тема, которая затрагивает различные аспекты эффективного и экологичного использования электроэнергии. В статье рассматриваются различные методы и модели машинного обучения, которые могут быть применены для решения задачи прогнозирования. В отдельную категорию выделено рассмотрение модели нейронных сетей такой как LTSM, дается ее описание, процесс обучения и использования, а также даны преимущества и недостатки данной модели. После чего на подготовленном датасете производится обучение модели для прогнозирования энергопотребления.

Об авторах

Вадим Денисович Новиков

ФГБОУ ВО «Казанский государственный энергетический университет»

Автор, ответственный за переписку.
Email: novikovschool@gmail.com
ORCID iD: 0009-0006-8034-8956

студент кафедры «Информационные технологии и интеллектуальные системы»

Россия, ул. Красносельская, 51, г. Казань, 420066, Российская Федерация

Ренат Минзашарифович Хамитов

ФГБОУ ВО «Казанский государственный энергетический университет»

Email: hamitov@gmail.com
ORCID iD: 0000-0002-9949-4404
SPIN-код: 7401-9166
Scopus Author ID: 57222149321

студент кафедры «Информационные технологии и интеллектуальные системы»

Россия, ул. Красносельская, 51, г. Казань, 420066, Российская Федерация

Список литературы

  1. Васильев Г.В., Бердоносов В.Д. Методика по эффективному применению гибридных моделей нейронных сетей для прогнозирования энергопотребления // Электротехнические системы и комплексы. 2022. №4 (57). С. 88-95.
  2. Моргоева А.Д., Моргоев И.Д. Прогнозирование потребления электрической энергии промышленным предприятием с помощью методов машинного обучения // Известия ТПУ. 2022. №7. С. 115-125.
  3. Горбунова Е.Б. Нейросетевой подход к прогнозированию потребления энергоресурсов в городской среде // Инженерный вестник Дона. 2018. №4 (51). http://ivdon.ru/ru/magazine/archive/n4y2018/5303
  4. Полуянович Н.К., Дубяго М.Н. Оценка воздействующих факторов и прогнозирование электропотребления в региональной энергосистеме с учетом режима ее эксплуатации // Известия ЮФУ. Технические науки. 2022. №2 (226). С. 31-46.
  5. Ляндау Ю.В., Темирбулатов А.У. Обзор применения технологий искусственного интеллекта в электроэнергетической отрасли // Инновации и инвестиции. 2023. №8. С. 304-309.
  6. Nurfaizi A., Hasanuddin M. Ticket Prediction using LSTM on a GLPI System // International Journal of Open Information Technologies. 2023. №7. http://injoit.org/index.php/j1/article/view/1567

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Новиков В.Д., Хамитов Р.М., 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».