Possibilities and prospects of targeted therapy for persistent human papillomavirus infection
- 作者: Kaptilnyy V.A.1, Efimova V.A.1, Lazarenko A.N.1
-
隶属关系:
- I.M. Sechenov First Moscow State Medical University
- 期: 卷 10, 编号 1 (2023)
- 页面: 13-24
- 栏目: Literature reviews
- URL: https://ogarev-online.ru/2313-8726/article/view/218808
- DOI: https://doi.org/10.17816/2313-8726-2023-10-1-13-24
- ID: 218808
如何引用文章
全文:
详细
Although most human papillomavirus (HPV) infections are transient and disappear within a few years of exposure, 10%–20% of infections persist latently, leading to disease progression, and ultimately various forms of invasive cancer. Despite the clinical efficacy of recently developed polyvalent prophylactic HPV vaccines, these preventive measures are not effective against pre-existing infections. In addition, given the difficulties associated with HPV, in areas with limited access to preventive vaccination, the development of effective treatments to control persistent infection remains an imperative need.
This review discusses not only the mechanisms underlying persistent HPV infection but also the prospect of immunomodulatory therapeutic vaccines and small molecule inhibitors that aim to enhance the host’s immune response against viral infection and hinder critical virus-host interactions.
The present review describes various oncogenic mechanisms of HPV infection at the level of the host cell genome. Special attention has been paid to the molecular mechanisms of carcinogenesis associated with persistent HPV infection, which leads to the formation of a risk group for the development of neoplasia among those with asymptomatic virus carriage.
作者简介
Vitaliy Kaptilnyy
I.M. Sechenov First Moscow State Medical University
编辑信件的主要联系方式.
Email: 1mgmu@mail.ru
ORCID iD: 0000-0002-2656-132X
MD, Cand. Sci. (Med.), Assistant Professor
俄罗斯联邦, MoscowViktoriya Efimova
I.M. Sechenov First Moscow State Medical University
Email: efimova299@mail.ru
ORCID iD: 0000-0001-7462-6928
Student
俄罗斯联邦, MoscowAnna Lazarenko
I.M. Sechenov First Moscow State Medical University
Email: theannlazarenko@gmail.com
ORCID iD: 0000-0002-4472-7098
Student
俄罗斯联邦, Moscow参考
- Galloway DA, Laimins LA. Human papillomaviruses: shared and distinct pathways for pathogenesis. Curr Opin Virol. 2015;14:87–92. doi: 10.1016/j.coviro.2015.09.001
- Boldogh I, Albrecht T, Porter DD. Persistent viral infections. In: Baron S., editor. Medical Microbiology. 4th ed. Galveston, USA: University of Texas Medical Branch at Galveston; 1996.
- Peng S, Trimble C, Wu L, et al. HLA-DQB1*02-restricted HPV-16 E7 peptide-specific CD4+ T-cell immune responses correlate with regression of HPV-16-associated high-grade squamous intraepithelial lesions. Clin Cancer Res. 2007;13(8):2479–2487. doi: 10.1158/1078-0432.CCR-06-2916
- Wank R, Thomssen C. High risk of squamous cell carcinoma of the cervix for women with HLA-DQw3. Nature. 1991;352:723–725. doi: 10.1038/352723a0
- Bernal-Silva S, Granados J, Gorodezky C, et al. HLA-DRB1 class II antigen level alleles are associated with persistent HPV infection in mexican women; a pilot study. Infect Agent Cancer. 2013;8(1):31. doi: 10.1186/1750-9378-8-31
- Rousseau MC, Pereira JS, Prado JC, et al. Cervical coinfection with human papillomavirus (HPV) types as a predictor of acquisition and persistence of HPV infection. J Infect Dis. 2001;184(12):1508–1517. doi: 10.1086/324579
- La Torre G, de Waure C, Chiaradia G, Mannocci A, Ricciardi W. HPV vaccine efficacy in preventing persistent cervical HPV infection: A systematic review and meta-analysis. Vaccine. 2007;25(50):8352–8358. doi: 10.1016/j.vaccine.2007.09.027
- Lizano M, Berumen J, García-Carrancá A. HPV-related carcinogenesis: basic concepts, viral types and variants. Arch Med Res. 2009;40(6):428–434. doi: 10.1016/j.arcmed.2009.06.001
- Lowy DR, Schiller JT. Reducing HPV-associated cancer globally. Cancer Prev Res. 2012;5(1):18–23. doi: 10.1158/1940-6207.CAPR-11-0542
- Akagi K, Li J, Broutian TR, et al. Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. Genome Res. 2014;24(2):185–199. doi: 10.1101/gr.164806.113
- Cullen AP, Reid R, Campion M, Lörincz AT. Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasm. J Virol. 1991;65(2):606–612. doi: 10.1128/JVI.65.2.606-612.1991
- Steger G, Corbach S. Dose-dependent regulation of the early promoter of human papillomavirus type 18 by the viral E2 protein. J Virol. 1997;71(1):50–58. doi: 10.1128/JVI.71.1.50-58.1997
- Huibregtse JM, Scheffner M, Howley PM. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 1991;10(13):4129–4135. doi: 10.1002/j.1460-2075.1991.tb04990.x
- Jeon S, Lambert PF. Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: Implications for cervical carcinogenesis. Proc Natl Acad Sci USA. 1995;92(5):1654–1658. doi: 10.1073/pnas.92.5.1654
- Groves IJ, Coleman N. Pathogenesis of human papillomavirus-associated mucosal disease. J Pathol. 2015;235(4):527–538. doi: 10.1002/path.4496
- Oliveira JG, Colf LA, McBride AA. Variations in the association of papillomavirus E2 proteins with mitotic chromosomes. Proc Natl Acad Sci USA. 2006;103(4):1047–1052. doi: 10.1073/pnas.0507624103
- Newell GR, Krementz ET, Roberts JD. Excess occurrence of cancer of the oral cavity, lung, and bladder following cancer of the cervix. Cancer. 1975;36(6):2155–2158. doi: 10.1002/cncr.2820360933
- McPhillips MG, Ozato K, McBride AA. Interaction of bovine papillomavirus E2 protein with Brd4 stabilizes its association with chromatin. J Virol. 2005;79(14):8920–8932. doi: 10.1128/JVI.79.14.8920-8932.2005
- Van Tine BA, Dao LD, Wu S-Y, et al. Human papillomavirus (HPV) origin-binding protein associates with mitotic spindles to enable viral DNA partitioning. Proc Natl Acad Sci USA. 2004;101(12):4030–4035. doi: 10.1073/pnas.0306848101
- Abbate EA, Voitenleitner C, Botchan MR. Structure of the papillomavirus DNA-tethering complex E2:Brd4 and a peptide that ablates HPV chromosomal association. Mol Cell. 2006;24(6):877–889. doi: 10.1016/j.molcel.2006.11.002
- Helfer CM, Wang R, You J. Analysis of the papillomavirus E2 and bromodomain protein Brd4 interaction using bimolecular fluorescence complementation. PLoS ONE. 2013;8(10):e77994. doi: 10.1371/journal.pone.0077994
- Parish JL, Bean AM, Park RB, Androphy EJ. ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Mol Cell. 2006;24(6):867–876. doi: 10.1016/j.molcel.2006.11.005
- Hirota Y, Lahti JM. Characterization of the enzymatic activity of hChlR1, a novel human DNA helicase. Nucleic Acids Res. 2000;28(4):917–924. doi: 10.1093/nar/28.4.917
- Christensen ND, Budgeon LR. Vaccines and immunization against human papillomavirus. Curr Probl Dermatol. 2014;45:252–264. doi: 10.1159/000356183
- Mollers M, King AJ, Knol MJ, et al. Effectiveness of human papillomavirus vaccine against incident and persistent infections among young girls: Results from a longitudinal dutch cohort study. Vaccine. 2015;33(23):2678–2683. doi: 10.1016/j.vaccine.2015.04.016
- Kim TJ, Jin H-T, Hur S-Y, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun. 2014;5:5317. doi: 10.1038/ncomms6317
- Lee S-J, Yang A, Wu TC, Hung C-F. Immunotherapy for human papillomavirus-associated disease and cervical cancer: review of clinical and translational research. J Gynecol Oncol. 2016;27(5):e51. doi: 10.3802/jgo.2016.27.e51
- Van de Wall S, Nijman HW, Daemen T. HPV-specific immunotherapy: key role for immunomodulators. Anticancer Agents Med Chem. 2014;14(2):265–279. doi: 10.2174/187152061402140128163306
- Jindra C, Huber B, Shafti-Keramat S, et al. Attenuated recombinant influenza a virus expressing HPV16 E6 and E7 as a novel therapeutic vaccine approach. PLoS ONE. 2015;10(9):e0138722. doi: 10.1371/journal.pone.0138722
- García-Hernández E, González-Sánchez JL, Andrade-Manzano A, et al. Regression of papilloma high-grade lesions (CIN 2 and CIN 3) is stimulated by therapeutic vaccination with MVA E2 recombinant vaccine. Cancer Gene Ther. 2006;13(6):592–597. doi: 10.1038/sj.cgt.7700937
- Adams M, Navabi H, Jasani B, et al. Dendritic cell (DC) based therapy for cervical cancer: Use of DC pulsed with tumour lysate and matured with a novel synthetic clinically non-toxic double stranded RNA analogue poly [I]:Poly [C(12)U] (Ampligen R). Vaccine. 2003;21(7–8):787–790. doi: 10.1016/S0264-410X(02)00599-6
- Kim JH, Bae SN, Lee CW, et al. A pilot study to investigate the treatment of cervical human papillomavirus infection with zinc-citrate compound (CIZAR®). Gynecol Oncol. 2011;122(2):303–306. doi: 10.1016/j.ygyno.2011.04.026
- De Freitas AC, da Conceicao Gomes Leitao M, Coimbra EC. Prospects of molecularly-targeted therapies for cervical cancer treatment. Curr Drug Targets. 2015;16(1):77–91. doi: 10.2174/1389450116666141205150942
- Lemmens I, Lievens S, Tavernier J. MAPPIT, a mammalian two-hybrid method for in-cell detection of protein–protein interactions. Methods Mol Biol. 2015;1278:447–455. doi: 10.1007/978-1-4939-2425-7_29
- Yan J, Li Q, Lievens S, Tavernier J, You J. Abrogation of the Brd4-positive transcription elongation factor B complex by papillomavirus E2 protein contributes to viral oncogene repression. J Virol. 2010;84(1):76–87. doi: 10.1128/JVI.01647-09
补充文件
