开启新视野:分子方法在细菌性阴道病检测中的作用
- 作者: Kazantseva V.D.1, Gushchin A.E.2, Ozolinya L.A.1, Savchenko T.N.1, Dobrokhotova Y.E.1
-
隶属关系:
- The Russian National Research Medical University named after N.I. Pirogov
- Moscow Scientific and Practical Center of Dermatovenereology and Cosmetology
- 期: 卷 12, 编号 2 (2025)
- 页面: 172-180
- 栏目: Reviews
- URL: https://ogarev-online.ru/2313-8726/article/view/310275
- DOI: https://doi.org/10.17816/aog653397
- EDN: https://elibrary.ru/MQHHWQ
- ID: 310275
如何引用文章
详细
细菌性阴道病是育龄期女性中最常见的阴道微生态失衡之一,其表现为乳酸杆菌与条件致病菌之间的比例失调。传统的诊断方法主要依赖临床症状及显微镜检查或培养等实验室技术,但在检测该病时往往缺乏足够的敏感性和特异性,从而可能导致诊断错误。近年来,分子诊断方法,包括聚合酶链式反应和宏基因组研究,已逐渐成为妇产科实践中更为精准诊断细菌性阴道病的重要工具。这些技术不仅能够识别致病微生物,还能评估其数量比例,从而显著提升对细菌性阴道病的诊断水平。本文探讨了当前用于检测细菌性阴道病的分子方法、其优缺点及在临床实践中的应用。文中还分析了近期研究结果,表明分子方法有助于提高诊断的准确性并推动个体化治疗。此外,文章还探讨了将此类技术应用于常规临床实践的前景,其潜力在于改善女性健康状况,并减少细菌性阴道病的复发。因此,分子方法在细菌性阴道病的诊断中构成了重大突破,为有效治疗和预防开辟了新的可能性。
作者简介
Valeriya D. Kazantseva
The Russian National Research Medical University named after N.I. Pirogov
编辑信件的主要联系方式.
Email: shapee08@mail.ru
ORCID iD: 0000-0002-4011-3195
SPIN 代码: 6973-6276
俄罗斯联邦, Moscow
Alexander E. Gushchin
Moscow Scientific and Practical Center of Dermatovenereology and Cosmetology
Email: aguschin1965@mail.ru
ORCID iD: 0000-0002-0399-1167
MD, Cand. Sci. (Medicine)
俄罗斯联邦, MoscowLyudmila A. Ozolinya
The Russian National Research Medical University named after N.I. Pirogov
Email: ozolinya@yandex.ru
ORCID iD: 0000-0002-2353-123X
SPIN 代码: 9407-9014
MD, Dr. Sci. (Medicine)
俄罗斯联邦, MoscowTatyana N. Savchenko
The Russian National Research Medical University named after N.I. Pirogov
Email: 12111944t@mail.ru
ORCID iD: 0000-0001-7244-4944
SPIN 代码: 3157-3682
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, MoscowYulia E. Dobrokhotova
The Russian National Research Medical University named after N.I. Pirogov
Email: pr.dobrohotova@mail.ru
ORCID iD: 0000-0002-7830-2290
SPIN 代码: 2925-9948
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Moscow参考
- Chen X, Lu Y, Chen T, Li R. The female vaginal microbiome in health and bacterial vaginosis. Front Cell Infect Microbiol. 2021;11:631972. doi: 10.3389/fcimb.2021.631972
- Ravel J, Gajer P, Abdo Z, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 2011;108(Suppl 1): 4680–4687. doi: 10.1073/pnas.1002611107
- Witkin SS, Linhares IM. Why do lactobacilli dominate the human vaginal microbiota? BJOG. 2017;124(4):606–611. doi: 10.1111/1471-0528.14390
- Petrova MI, Lievens E, Malik S, et al. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front Physiol. 2015;6:81. doi: 10.3389/fphys.2015.00081
- Javed A, Parvaiz F, Manzoor S. Bacterial vaginosis: An insight into the prevalence, alternative treatments regimen and it’s associated resistance patterns. Microb Pathog. 2019;127:21–30. doi: 10.1016/j.micpath.2018.11.046
- Clinical recommendations: Bacterial vaginosis. 2022–2023–2024 (04.05.2022). Approved by the Ministry of Health of the Russian Federation. Moscow; 2022. (In Russ.)
- Abou Chacra L, Fenollar F, Diop K. Bacterial vaginosis: what do we currently know? Front Cell Infect Microbiol. 2022;11:672429. doi: 10.3389/fcimb.2021.672429
- Muzny CA, Taylor CM, Swords WE, et al. An updated conceptual model on the pathogenesis of bacterial vaginosis. J Infect Dis. 2019;220(9):1399–1405. doi: 10.1093/infdis/jiz342
- Castro J, Jefferson KK, Cerca N. Genetic heterogeneity and taxonomic diversity among gardnerella species. Trends Microbiol. 2020;28(3):202–211. doi: 10.1016/j.tim.2019.10.002
- Priputnevich TV, Muravieva VV, Gordeev AB. The molecular genetic and phenotypic features of synanthropic and pathogenic Gardnerella vaginalis strains. Akusherstvo i Ginekologiya. 2019;(3):10–17. doi: 10.18565/aig.2019.3.10-17 EDN: XSJJNX
- Ivakhnishina NM, Ostrovskaya OV, Kozharskaya OV, et al. Intrauterine and postnatal infection agents detected in autopsy material of lost low-weight children. Far Eastern Medical Journal. 2015;(4):44–47. EDN: VBKVXX
- Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet. 2016;388(10063):3027–3035. doi: 10.1016/S0140-6736(16)31593-8
- Schellenberg JJ, Paramel Jayaprakash T, Withana Gamage N, et al. Gardnerella vaginalis subgroups defined by cpn60 sequencing and sialidase activity in isolates from Canada, Belgium and Kenya. PLoS One. 2016;11(1):e0146510. doi: 10.1371/journal.pone.0146510
- Vaneechoutte M, Guschin A, Van Simaey L, et al. Emended description of Gardnerella vaginalis and description of Gardnerella leopoldii sp. nov, Gardnerella piotii sp. nov. and Gardnerella swidsinskii sp. nov., with delineation of 13 genomic species within the genus Gardnerella. Int J Syst Evol Microbiol. 2019;69(3):679–687. doi: 10.1099/ijsem.0.003200
- Bradshaw CS, Tabrizi SN, Fairley CK, et al. The association of Atopobium vaginae and Gardnerella vaginalis with bacterial vaginosis and recurrence after oral metronidazole therapy. J Infect Dis. 2006;194(6):828–836. doi: 10.1086/506621
- Swidsinski A, Mendling W, Loening-Baucke V, et al. Adherent biofilms in bacterial vaginosis. Obstet Gynecol. 2005;106(5 Pt 1):1013–1023. doi: 10.1097/01.AOG.0000183594.45524.d2
- Machado D, Castro J, Palmeira-de-Oliveira A, et al. Bacterial vaginosis biofilms: challenges to current therapies and emerging solutions. Front Microbiol. 2016;6:1528. doi: 10.3389/fmicb.2015.01528
- Harwich MD Jr, Alves JM, Buck GA, et al. Drawing the line between commensal and pathogenic Gardnerella vaginalis through genome analysis and virulence studies. BMC Genomics. 2010;11:375. doi: 10.1186/1471-2164-11-375
- Lasa I, Penadés JR. Bap: a family of surface proteins involved in biofilm formation. Res Microbiol. 2006;157(2):99–107. doi: 10.1016/j.resmic.2005.11.003
- Swidsinski A, Doerffel Y, Loening-Baucke V, et al. Gardnerella biofilm involves females and males and is transmitted sexually. Gynecol Obstet Invest. 2010;70(4):256–263. doi: 10.1159/000314015
- Cornejo OE, Hickey RJ, Suzuki H, Forney LJ. Focusing the diversity of Gardnerella vaginalis through the lens of ecotypes. Evol Appl. 2017;11(3):312–324. doi: 10.1111/eva.12555
- Oliver A, LaMere B, Weihe C, et al. Cervicovaginal microbiome composition is associated with metabolic profiles in healthy pregnancy. mBio. 2020;11(4):e01851–e018520. doi: 10.1128/mBio.01851-20
- Ferreira CST, da Silva MG, de Pontes LG, et al. Protein content of cervicovaginal fluid is altered during bacterial vaginosis. J Low Genit Tract Dis. 2018;22(2):147–151. doi: 10.1097/LGT.0000000000000367
- Blankenstein T, Lytton SD, Leidl B, et al. Point-of-care (POC) diagnosis of bacterial vaginosis (BV) using VGTest™ ion mobility spectrometry (IMS) in a routine ambulatory care gynecology clinic. Arch Gynecol Obstet. 2015;292(2):355–362. doi: 10.1007/s00404-014-3613-x
- Cartwright CP, Lembke BD, Ramachandran K, et al. Development and validation of a semiquantitative, multitarget PCR assay for diagnosis of bacterial vaginosis. J. Clin Microbiol. 2012;50(7):2321–2329. doi: 10.1128/JCM.00506-12
- Coleman JS, Gaydos CA. Molecular diagnosis of bacterial vaginosis: an update. J Clin Microbiol. 2018;56(9):e00342–e003418. doi: 10.1128/JCM.00342-18
- Liu GJ, Wang B, Zhang Y, et al. A tetravalent sialic acid-coated tetraphenylethene luminogen with aggregation-induced emission characteristics: design, synthesis and application for sialidase activity assay, high-throughput screening of sialidase inhibitors and diagnosis of bacterial vaginosis. Chem Commun (Camb). 2018;54(76):10691–10694. doi: 10.1039/c8cc06300a
- Lamont RF, van den Munckhof EH, Luef BM, et al. Recent advances in cultivation-independent molecular-based techniques for the characterization of vaginal eubiosis and dysbiosis. Fac Rev. 2020;9:21. doi: 10.12703/r/9-21
- Shalepo KV, Nazarova VV, Menukhova YuN, et al. Assessment of current methods of laboratory diagnosis of bacterial vaginosis. Journal of Obstetrics and Womans Diseases. 2014;63(1):26–29. EDN: SEMVLX
- Rumyantseva T, Shipitsyna E, Guschin A, Unemo M. Evaluation and subsequent optimizations of the quantitative AmpliSens Florocenosis/Bacterial vaginosis-FRT multiplex real-time PCR assay for diagnosis of bacterial vaginosis. APMIS. 2016;124(12):1099–1108. doi: 10.1111/apm.12608
- van den Munckhof EHA, van Sitter RL, Boers KE, et al. Comparison of amsel criteria, nugent score, culture and two CE-IVD marked quantitative real-time PCRs with microbiota analysis for the diagnosis of bacterial vaginosis. Eur J Clin Microbiol Infect Dis. 2019;38(5):959–966. doi: 10.1007/s10096-019-03538-7
- Bostwick GD, Hunt CA, Parker LR, et al. Utility of next-generation sequencing in managing bacterial vaginosis: examples from clinical practice. J Women’s Heal Care. 2016;5:322. doi: 10.4172/2167-0420.1000322
- Balashov SV, Mordechai E, Adelson ME, Gygax SE. Identification, quantification and subtyping of Gardnerella vaginalis in noncultured clinical vaginal samples by quantitative PCR. J Med Microbiol. 2014;63(Pt 2):162–75. doi: 10.1099/jmm.0.066407-0
- Shipitsyna E, Krysanova A, Khayrullina G, et al. Quantitation of all four Gardnerella vaginalis clades detects abnormal vaginal microbiota characteristic of bacterial vaginosis more accurately than putative G. vaginalis sialidase a gene count. Mol Diagn Ther. 2019;23(1):139–147. doi: 10.1007/s40291-019-00382-5
补充文件
