Development of a digital twin prototype for an automated smart grid control system for cybersecurity threat analysis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents a prototype of a digital twin (DT) for an automated control system (ACS) of a smart power grid, developed for the analysis of cybersecurity threats. The proposed architecture replicates the behavior of the control layers of the energy system and incorporates modules for synthetic data generation, attack simulation, anomaly detection, and threat assessment. Experimental validation was carried out in a laboratory environment through the execution of typical cyberattack scenarios (DoS, malware injection, control signal compromise). A comparative evaluation of two configurations – one based solely on real data and the other incorporating synthetic data – demonstrated an increase in F1-score metrics when using extended datasets. The study discusses the limitations of the prototype, including simplified modeling of physical processes and the need for manual verification of generated data. The results suggest the applicability of the proposed approach for testing threat detection mechanisms in smart grid environments.

About the authors

Evgenii S. Mityakov

MIREA – Russian Technological University

Author for correspondence.
Email: mityakov@mirea.ru
ORCID iD: 0000-0001-6579-0988
SPIN-code: 5691-8947

Dr. Sci. (Econ.), Professor; Head, KB-9 Department

Russian Federation, Moscow

References

  1. Ali M., Kaddoum G., Li W. et al. A smart digital twin enabled security framework for vehicle-to-grid cyber-physical systems. IEEE Transactions on Information Forensics and Security. 2023. Vol. 18. Pp. 5258–5271. doi: 10.1109/TIFS.2023.3305916.
  2. Erkek Í., Irmak E. Enhancing cybersecurity of a hydroelectric power plant through digital twin modeling and explainable AI. IEEE Access. 2025. Vol. 13. Pp. 41887–41908. doi: 10.1109/ACCESS.2025.3547672.
  3. Gehrmann C., Gunnarsson M. A Digital twin based industrial automation and control system security architecture. IEEE Transactions on Industrial Informatics. 2020. Vol. 16. Pp. 669–680. doi: 10.1109/TII.2019.2938885.
  4. Hammar K., Stadler R. Digital twins for security automation. In: IEEE/IFIP Network Operations and Management Symposium NOMS 2023. 2023. Pp. 1–6. doi: 10.1109/NOMS56928.2023.10154288.
  5. Homaei M., Mogollon-Gutierrez O., Sancho J. et al. A review of digital twins and their application in cybersecurity based on artificial intelligence. Artificial Intelligence Review. 2024. Vol. 57. P. 201. doi: 10.1007/s10462-024-10805-3.
  6. Jeremiah S.R., Azzaoui A., Xiong N., Park J. A comprehensive survey of digital twins: Applications, technologies and security challenges. Journal of Systems Architecture. 2024. Vol. 151. P. 103120. doi: 10.1016/j.sysarc.2024.103120.
  7. Ji C., Niu Y. A hybrid evolutionary and machine learning approach for smart city planning: Digital twin approach. Sustainable Energy Technologies and Assessments. 2024. doi: 10.1016/j.seta.2024.103650.
  8. Li Y., Guan P., Li T. et al. Digital twin for secure peer-to-peer trading in cyber-physical energy systems. IEEE Transactions on Network Science and Engineering. 2025. Vol. 12. Pp. 669–683. doi: 10.1109/TNSE.2024.3507956.
  9. Sen Ö., Bleser N., Ulbig A. Digital twin for evaluating detective countermeasures in smart grid cybersecurity. In: IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). 2023. Pp. 1–6. doi: 10.1109/SmartGridComm57358.2023.10333871.
  10. Sousa B., Arieiro M., Pereira V. et al. ELEGANT: Security of critical infrastructures with digital twins. IEEE Access. 2021. Vol. 9. Pp. 107574–107588. doi: 10.1109/ACCESS.2021.3100708.
  11. Suhail S., Zeadally S., Jurdak R. et al. Security attacks and solutions for digital twins. Computers in Industry. 2022. Vol. 151. P. 103961. doi: 10.1016/j.compind.2023.103961.
  12. Wang Q., Wu W., Qian L. et al. Design and implementation of secure and reliable information interaction architecture for digital twins. China Communications. 2023. Vol. 20. Pp. 79–93. doi: 10.23919/JCC.2023.02.006.
  13. Wang Y., Su Z., Guo S. et al. A survey on digital twins: Architecture, enabling technologies, security and privacy, and future prospects. IEEE Internet of Things Journal. 2023. Vol. 10. Pp. 14965–14987. doi: 10.1109/JIOT.2023.3263909.
  14. Dorrer M.G. Implementation of a business process digital twin based on the ELMA system. ITNOU: Information Technologies in Science, Education and Management. 2021. No. 1 (17). Pp. 35–43. (In Rus.). doi: 10.47501/ITNOU.2021.1.035-043. EDN: UWTIOV.
  15. Rodina L.A. Development of digital twin prototypes for management processes (on the example of new product proposal). Omsk University Bulletin. Series: Economics. 2020. Vol. 18. No. 2. Pp. 48–54. (In Rus.). doi: 10.24147/1812-3988.2020.18(2).48-54. EDN: UIQGAF.

Supplementary files

Supplementary Files
Action
1. JATS XML


License URL: https://www.urvak.ru/contacts/

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).