GPU-accelerated quantification of atomic orderliness in amorphous alloys via HRTEM image processing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Understanding the structural characteristics of amorphous alloys at the atomic scale is crucial for elucidating their unique mechanical, thermal, and magnetic properties. However, the absence of long-range order in these materials poses significant challenges for conventional structural analysis techniques. This work presents a GPU-accelerated software framework designed for high-throughput processing and quantitative analysis of High-Resolution Transmission Electron Microscopy (HRTEM) images to reveal hidden atomic orderliness in amorphous alloys. The proposed system integrates parallelized image preprocessing, processing, atom detection, radius-based clustering, and graph-theoretical and entropy-based metrics to quantify short- and medium-range order. A modular architecture enables efficient GPU computation using CUDA, CuPy, and optimized memory strategies, achieving speedups of up to 220× compared to CPU implementations. Validation was conducted on both simulated datasets (FeB, CoNiFeSiB) and real HRTEM images of amorphous alloys (CoP, NiW, Fe-based 71КНСР). Results demonstrate strong correlations between cluster size, bond angle distributions, and entropy metrics with macroscopic material properties such as hardness and thermal stability. Larger clusters and obtuse bond angles were found to indicate increased local structural order, while entropy measures provided sensitive discrimination of disorder.

About the authors

Dagim Sileshi Dilla

Far Eastern Federal University

Author for correspondence.
Email: dilla.d@dvfu.ru
ORCID iD: 0000-0002-9100-1257
SPIN-code: 7200-1921

assistant, Department of Software Engineering

Russian Federation, Vladivostok

Evgeniy V. Pustovalov

Far Eastern Federal University

Email: pustovalov.ev@dvfu.ru
ORCID iD: 0000-0003-1036-3975
SPIN-code: 6192-2432

Dr. Sci. (Phys.-Math.); Professor, Department of Information and Computer System

Russian Federation, Vladivostok

Irina L. Artemeva

Far Eastern Federal University

Email: artemeva.il@dvfu.ru
ORCID iD: 0000-0003-2088-5259
SPIN-code: 8161-1313

Dr. Sci. (Eng.), Professor; deputy Director for Scientific Works

Russian Federation, Vladivostok

References

  1. Williams D.B., Carter C.B. Transmission electron microscopy: A textbook for materials science. Springer, 2009. doi: 10.1007/978-0-387-76501-3.
  2. Chen J.H., Zandbergen H.W., Van Dyck D. Atomic imaging in aberration-corrected high-resolution transmission electron microscopy. Ultramicroscopy. 2004. Vol. 98, No. 2–4. Pp. 81–97. doi: 10.1016/j.ultramic.2003.08.003.
  3. Kirkland E.J. Advanced computing in electron microscopy. 3rd ed. Springer, 2020. 289 p. doi: 10.1007/978-3-030-33260-0.
  4. Ophus C. A fast image simulation algorithm for scanning transmission electron microscopy. Advanced Structural and Chemical Imaging. 2017. Vol. 3. Art. 13. doi: 10.1186/s40679-017-0046-1.
  5. Ronneberger O., Fischer P., Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Lecture notes in computer science. Vol. 9351. Springer, 2015. Pp. 234–241. doi: 10.1007/978-3-319-24574-4_28.
  6. Glaser J., Nguyen T.D., Anderson J.A. et al. Strong scaling of general-purpose molecular dynamics simulations on GPUs. Computer Physics Communications. 2015. Vol. 192. Pp. 97–107. doi: 10.1016/j.cpc.2015.02.010.
  7. Chapman J., Goldman N., Wood B.C. Efficient and universal characterization of atomic structures through a topological graph order parameter. npj Computational Materials. 2022. Vol. 8. Art. 37. doi: 10.1038/s41524-022-00717-7.
  8. Shannon C.E. A Mathematical theory of communication. The Bell System Technical Journal (BSTJ). 1948. Vol. 27. No. 3. Pp. 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x.
  9. Tsallis C. Possible generalization of Boltzmann–Gibbs statistics. The Journal of Statistical Physics. 1988. Vol. 52. No. 1–2. Pp. 479–487. doi: 10.1007/BF01016429.
  10. Srolovitz D., Egami T., Vitek V. Radial distribution function and structural relaxation in amorphous solids. Physical Review B: Condensed Matter and Materials Physics. 1981. Vol. 24. No. 12. Pp. 6936–6944. doi: 10.1103/PhysRevB.24.6936.
  11. Stobbs W., Smith D. High resolution imaging of amorphous materials. Nature. 1979. Vol. 281. Pp. 54–55. doi: 10.1038/281054a0.
  12. Pustovalov E.V., Modin E.B., Frolov A.M. et al. Effect of the process conditions for the preparation of CoNiFeSiB amorphous alloys on their structure and properties. Journal of Surface Investigation. 2019. Vol. 13. No. 4. Pp. 600–608. doi: 10.1134/S1027451019040128.
  13. Dilla D.S., Pustovalov E.V., Fedorets A.N. Advanced electron microscopy image processing for analyzing amorphous alloys: Electron Microscopy Image Cluster Analyzer (EMICA). Computational Nanotechnology. 2024. Vol. 11. No. 1. Pp. 104–111. doi: 10.33693/2313-223X-2024-11-1-104-111. EDN: DYNPTQ.
  14. Dilla D.S., Pustovalov E.V., Artemyeva I.L. Applying GPU Parallel Programming for Image Processing and Clustering. Computational Nanotechnology. 2024. Vol. 11. No. 4. Pp. 77–86. (In Rus.). doi: 10.33693/2313-223X-2024-11-4-77-86. EDN: GGAJWU.
  15. Chapman J., Goldman N., Wood B.C. Efficient and universal characterization of atomic structures through a topological graph order parameter. npj Computational Materials. 2022. Vol. 8. Art. 37. doi: 10.1038/s41524-022-00717-7.

Supplementary files

Supplementary Files
Action
1. JATS XML


License URL: https://www.urvak.ru/contacts/

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).