Development of a software and laboratory complex for studying cryptography on elliptic curves

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This article presents a software and laboratory suite for studying the mathematical foundations and practical applications of elliptic curve cryptography (ECC). The suite is implemented in Python using the PyQt6 framework and the sympy library for cryptographic computations. The program provides an interactive interface for entering elliptic curve parameters, visualizing points on the curve, constructing Cayley tables for point addition, and checking group properties. Key features of the suite include the implementation of the Tonelli–Shanks algorithm for finding absolute square roots, the ability to work with curves over finite fields of large order, and a bilingual interface (Russian/English). The developed suite can be used in educational settings to teach the fundamentals of elliptic curve cryptography.

About the authors

Rifat R. Sharipov

Kazan National Research Technical University named after A.N. Tupolev – KAI

Author for correspondence.
Email: riphat@mail.ru
ORCID iD: 0000-0002-4957-8132
SPIN-code: 8116-0738
Scopus Author ID: 57191173824

Cand. Sci. (Eng.), associate professor, Department of Information Security Systems

Russian Federation, Kazan

Askar Z. Khalimov

Kazan National Research Technical University named after A.N. Tupolev – KAI

Email: Khalimov20@yandex.ru
SPIN-code: 7563-8145

Department of Information Protection Systems

Russian Federation, Kazan

Marat Y. Perukhin

Kazan National Research Technological University

Email: perukhin@inbox.ru
SPIN-code: 3199-2966
Scopus Author ID: 52564039400

Cand. Sci. (Eng.), Associate Professor, associate professor, Department of Automated Information Collection and Processing Systems

Russian Federation, Kazan

References

  1. Khalimov A.Z., Sharipov R.R. Prospects of elliptic curve cryptography. In: Digital systems and models: Theory and practice of design, development and use. Proceedings of the International Scientific and Practical Conference (Kazan, April 10–11, 2025). Kazan: Kazan State Power Engineering University, 2025. Pp. 2365–2368.
  2. Kistanov A.M. Development of a cryptosystem based on an elliptic curve over a finite irrational field. Bulletin of the Samara State Technical University. Series: Technical Sciences. 2005. No. 33. Pp. 172–176. (In Rus.)
  3. Khalimov A.Z., Sharipov R.R. Requirements for elliptic curve cryptography. In: Digital systems and models: Theory and practice of design, development and use. Proceedings of the International Scientific and Practical Conference (Kazan, April 10–11, 2025). Kazan: Kazan State Power Engineering University, 2025. Pp. 2369–2372.
  4. Nuriev M.G., Gizatullin Z.M. Physical modeling of intentional electromagnetic influence on computer equipment through building metal structures. Information and Security. 2017. Vol. 20. No. 3. Pp. 456–459. (In Rus.)
  5. Lebedev P.A., Nesterenko A.Y. Arithmetic on elliptic curves using graphical calculators. Chebyshevskii Sbornik. 2012. Vol. 13. No. 2-2 (42). Pp. 91–105. (In Rus.)
  6. Gizatullin Z.M., Gizatullin R.M., Nuriev M.G. Methodology and models for physical modeling of electromagnetic interference using the example of analyzing the noise immunity of automotive electronics. Journal of Communications Technology and Electronics. 2021. Vol. 66. No. 6. Pp. 609–613. (In Rus.). doi: 10.31857/S0033849421060103.
  7. Gibadullin R.F., Lekomtsev D.V., Perukhin M.Y. Analysis of industrial network parameters using neural network processing. Artificial Intelligence and Decision Making. 2020. No. 1. Pp. 80–87. (In Rus.). doi: 10.14357/20718594200108.
  8. Degtyarenko V.A., Yurkova M.A. Mathematical model of the American standard for digital signature on an elliptic curve. Bulletin of the Scientific Society of Students, Postgraduates and Young Scientists. 2016. No. 4. Pp. 15–20. (In Rus.)
  9. Babenko M.G. Pseudorandom number generator on an elliptic curve. Information Counteraction to Terrorist Threats. 2010. No. 14. Pp. 182–187. (In Rus.)
  10. Anisimova E.S. The use of elliptic curves in the digital signature standard. Current Issues in the Humanities and Natural Sciences. 2015. No. 1-1. Pp. 55–57. (In Rus.)
  11. Streltsova A.S., Ukhvarkin S.P., Filimonov V.V. Application of elliptic curves in the Diffie–Hellman algorithm. Scientific Almanac. 2019. No. 1-3 (51). Pp. 62–64. (In Rus.). doi: 10.17117/na.2019.01.03.062.
  12. Sadykov A.M., Alekseeva A.A., Safiullina L.Kh., Sabirova D.I. Capabilities of open-source cyber threat intelligence technologies using the MITRE ATT&CK framework. Bulletin of the Volga State University of Technology. Series: Radio Engineering and Infocommunication Systems. 2025. No. 1 (65). Pp. 55–69. (In Rus.). doi: 10.25686/2306-2819.2025.1.55.
  13. Sharipov R.R., Kassirova A.A. Development of a software package for implementing the Berlekamp–Massey algorithm on simple linear-feedback shift registers for students of the “Cryptography” discipline. Computational Nanotechnology. 2025. Vol. 12. No. 1. Pp. 97–104. doi: 10.33693/2313-223X-2025-12-1-97-104.EDN: MRQUHZ
  14. Kasimova A.R., Safiullina L.Kh., Alekseeva A.A. The use of cyber polygons for training specialists in the field of information security. Automation in Industry. 2024. No. 9. Pp. 61–64. (In Rus.). doi: 10.25728/avtprom.2024.09.14.
  15. Sharipov R.R., Makarov S.P., Kassirova A. A. Development of a software complex for the RC4 stream cipher for students of the “Cryptography” discipline. International Research Journal. 2024. No. 9 (147). (In Rus.). doi: 10.60797/IRJ.2024.147.15.

Supplementary files

Supplementary Files
Action
1. JATS XML


License URL: https://www.urvak.ru/contacts/

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).