Automatic identification of modal parameters of dynamic systems based on vibration response

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, the algorithm determines the identification of modal parameters of engineering structures and buildings described as a linear dynamic time-invariant system in spatial change. Modal parameters are estimated on the basis of recorded vibration response under the assumption of random nature of the disturbing forces. The paper describes the features of the algorithm and provides references to relevant sources that allow a deeper understanding of the algorithm details. The paper proposes an approach to determining the values of modal parameters when performing a number of consecutive identifications, which can be further applied to automate the process for real-time operation or when processing the results of multiple testing. The algorithm allows you to obtain a stable model. The invariance of the system in time is a key factor that ensures the synthesis of mathematical models for ensuring the information security of the objects under consideration.

About the authors

Alexander A. Mayak

MIREA – Russian Technological University; Dynamic Systems LLC

Author for correspondence.
Email: alexmaiak@yandex.ru

postgraduate student, Department of Automatic Systems of the Institute of Artificial Intelligence

Russian Federation, Moscow; Moscow

Dmitry A. Akimov

MIREA – Russian Technological University

Email: akimov_d@mirea.ru
ORCID iD: 0000-0001-6889-618X
Scopus Author ID: 55531854400
ResearcherId: U-5717-2018

Cand. Sci. (Eng.), Laureate of the Government of the Russian Federation Prize in Science and Technology, associate professor, Department of Automatic Systems, Institute of Artificial Intelligence

Russian Federation, Moscow

Alexey S. Verkner

MIREA – Russian Technological University

Email: aleksverk@mail.ru
ORCID iD: 0000-0001-7269-4396
SPIN-code: 5575-7266

postgraduate student, assistant, Department of Automatic Systems, Institute of Artificial Intelligence

Russian Federation, Moscow

Ekaterina N. Matyukhina

MIREA – Russian Technological University

Email: makaterina_ski@mail.ru
SPIN-code: 7078-2329
Scopus Author ID: 56538724100
ResearcherId: T-1829-2017

Cand. Sci. (Eng.), Associate Professor, associate professor, Department of Intelligent Information Security Systems, Institute of Cybersecurity and Digital Technologies

Russian Federation, Moscow

Alexandra V. Volosova

Bauman Moscow State Technical University

Email: volosova@bmstu.ru
SPIN-code: 7973-5425
Scopus Author ID: 57437351400

Cand. Sci. (Eng.), Associate Professor, associate professor

Russian Federation, Moscow

References

  1. Fahad Bin Zahid, Zhi Chao Ong, Shin Yee Khoo. A review of operational modal analysis techniques for in-service modal identification. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2020. Vol. 42. P. 398. doi: 10.1007/s40430-020-02470-8.
  2. Gangrou Wu, Min He, Peng Liang, Chunsheng Ye. Automated modal identification based on improved clustering method. Mathematical Problems in Engineering. 2020. doi: 10.1155/2020/5698609.
  3. Ardila Y.V., Gómez-Araújo I.D., Villalba-Morales J.D. An automated procedure for continuous dynamic monitoring of structures: Theory and validation. Journal of Vibration Engineering & Technologies. 2025. Vol. 12. Pp. 4313–4333. doi: 10.1007/s42417-023-01121-1.
  4. Cho K., Cho J-R. Stochastic subspace identification-based automated operational modal analysis considering modal uncertainty. Applied Sciences. 2023. Vol. 13. doi: 10.3390/app132212274.
  5. Inman D.J. Vibration with Control. doi: 10.1002/978 1119375081.fmatter.
  6. Zhi L., Jiyang F., Qisheng L. et al. Modal identification of civil structures via covariance-driven stochastic subspace method. Mathematical Biosciences and Engineering. 2019. Vol. 16. Issue 5. Pp. 5709–5728. doi: 10.3934/mbe.2019285.
  7. O’Connell B.J., Rogers T.J. A robust probabilistic approach to stochastic subspace identification. Journal of Sound and Vibration. 2024. Vol. 581. doi: 10.1016/j.jsv.2024.118381.
  8. Mellinger P., Döhler M., Mevel L. Variance estimation of modal parameters from output-only and input/output subspace-based system identification. Journal of Sound and Vibration. 2016. Vol. 379. Pp. 1–27. doi: 10.1016/j.jsv.2016.05.037.
  9. Tomassini E., García-Macías E., Ubertini F. Fast stochastic subspace identification of densely instrumented bridges using randomized SVD. Mechanical Systems and Signal Processing. 2025. Vol. 225. doi: 10.1016/j.ymssp.2024.112264.
  10. Peeters B., De Roeck G. Reference-based stochastic subspace identification for output-only modal analysis. Mechanical Systems and Signal Processing. 1999. Vol. 13. Issue 6. Pp. 855–878. doi: 10.1006/mssp.1999.1249.
  11. Greś S., Döhler M., Mevel L. Uncertainty quantification of the Modal Assurance Criterion in operational modal analysis. Mechanical Systems and Signal Processing. 2021. Vol. 152. doi: 10.1016/j.ymssp.2020.107457.
  12. Greś S., Döhler M., Andersen P., Mevel L. Uncertainty quantification for the Modal Phase Collinearity of complex mode shapes. Mechanical Systems and Signal Processing. 2021. Vol. 152. doi: 10.1016/j.ymssp.2020.107436.
  13. Zeng J., Kim Y.H. A Two-stage framework for automated operational modal identification. Structure and Infrastructure Engineering. 2021. Vol. 19. Pp. 1–20. doi: 10.1080/15732479.2021.1919151.
  14. Zhang J., Xu Z., Hua X. Deep learning-based automated operational modal analysis of cable-stayed bridges. Journal of Bridge Engineering. 2022. Vol. 27 (8). doi: 10.1061/(ASCE)BE.1943-5592.0001885.
  15. Chen Y., Li J., Hao H. Bayesian operational modal analysis of structures with uncertain parameters. Engineering Structures. 2022. Vol. 251. doi: 10.1016/j.engstruct.2021.113495.
  16. Liu R., Chen Z., He X. Automated modal identification of high-rise buildings under wind excitation. Journal of Wind Engineering and Industrial Aerodynamics. 2022. Vol. 220. doi: 10.1016/j.jweia.2021.104861.
  17. Zhao X., Xu Y., Zhu W. Edge computing-based real-time modal analysis for structural health monitoring. IEEE Internet of Things Journal. 2022. Vol. 9 (4). doi: 10.1109/JIOT.2021.3098024.
  18. Kulagin V.P., Akimov D.A., Pavelev S.A., Guryanova E.O. Identification of temporal anomalies in spectrograms of vibration measurement signals of a turbogenerator rotor using a recurrent neural network autoencoder. Russian Technological Journal. 2021. Vol. 9. No. 2 (40). Pp. 78–87. (In Rus.). doi: 10.32362/2500-316X-2021-9-2-78-87. EDN: ENOHLO.
  19. Kozelskaya S.O., Kotelnikov V.V., Akimov D.A. et al. Experimental studies of the possibility of assessing the service life of composite structures under their force loading and industrial building structures. Bulletin of the Tambov State Technical University. 2021. Vol. 27. No. 1. Pp. 132–148. (In Rus.). doi: 10.17277/vestnik.2021.01.pp.132-148. EDN: STGRQO.
  20. Kozelskaya S.O., Akimov D.A., Andreev A.S. et al. Application of deep neural networks based on palliative analysis in conditions of incomplete information from optical-thermal and electrical non-destructive testing to predict the maximum service life of structures made of composite materials. Control. Diagnostics. 2021. Vol. 24. No. 3 (273). Pp. 4–15. doi: 10.14489/td.2021.03.pp.004-015. EDN: DDAUDM.
  21. Kulagin V., Akimov D., Guryanova E.O., Pavelyev S. Active strain-statistical models for reconstructing multidimensional images of lung tissue lesions. In: Proceedings of the International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2021). Lecture Notes in Electrical Engineering. 2022. LNEE. Vol. 784. Pp. 312–315. doi: 10.1007/978-981-16-3880-0_32. EDN: IEWZVV.
  22. Kotelnikov V.V., Akimov D.A., Kozelskaya S.O., Guryanova E.O. Development of software and methods for predicting the service life of complex structures based on the results of chronological diagnostics of technical condition and artificial intelligence. Control. Diagnostics. 2022. Vol. 25. No. 1(283). Pp. 26–37. doi: 10.14489/td.2022.01.pp.026-037. EDN: TEMHIA.

Supplementary files

Supplementary Files
Action
1. JATS XML


License URL: https://www.urvak.ru/contacts/

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).