Spatial characterization of macrophage-enriched tumor regions in triple-negative breast cancer
- Authors: Patskan I.A.1, Kalinchuk A.Y.1, Tsarenkova E.A.1, Grigoryeva E.S.1, Larionova I.V.1, Popova N.O.1, Tashireva L.A.1
-
Affiliations:
- Tomsk National Research Medical Center of the Russian Academy of Science
- Issue: Vol 20, No 4 (2025)
- Pages: 359-370
- Section: Original Study Articles
- URL: https://ogarev-online.ru/2313-1829/article/view/381690
- DOI: https://doi.org/10.17816/gc665406
- EDN: https://elibrary.ru/CMUSCS
- ID: 381690
Cite item
Abstract
BACKGROUND: The spatial organization of immune cells within tumors is an important area of investigation in studies of interactions between tumor cells and the tumor microenvironment. This is particularly relevant because some immune cells function through direct contact with their target cells, whereas others communicate over a distance via paracrine signaling involving cytokines. Thus, the topography of tumor cells and microenvironmental cells may determine the possibility and nature of intercellular interactions and thereby influence the functional effects of immune cells.
AIM: This study aimed to compare the spatial transcriptomic profiles of tumor and stromal regions enriched in macrophages in triple-negative breast cancer.
METHODS: Eight patients with triple-negative breast cancer were included. Spatial transcriptomic analysis was performed on formalin-fixed, paraffin-embedded tissue sections using high-throughput RNA sequencing with the 10X Visium platform. The annotated spots enriched in intraepithelial and stromal macrophages were used for downstream bioinformatic analysis.
RESULTS: A total of 437 differentially expressed genes were identified between the two groups of spots containing macrophages with distinct spatial localization. Spots with intraepithelial macrophages were characterized by activation of processes related to cytokine and chemokine signaling, regulation of regulatory T-cell differentiation, organization of cell–cell contacts, wound healing, and inhibition of viral activity. Spots enriched in stromal macrophages demonstrated activation of biological processes associated with the regulation of angiogenesis, cell migration and recruitment, cell adhesion, and stromal remodeling.
CONCLUSION: Macrophage topography within primary tumors of triple-negative breast cancer is associated with their functional characteristics. These fundamental findings may be useful for developing prognostic criteria and therapeutic approaches aimed at modulating the tumor microenvironment to improve long-term outcomes in patients with triple-negative breast cancer.
About the authors
Ivan A. Patskan
Tomsk National Research Medical Center of the Russian Academy of Science
Author for correspondence.
Email: packanivan59@gmail.com
ORCID iD: 0009-0008-4437-6583
SPIN-code: 4880-3416
Russian Federation, Tomsk
Anna Yu. Kalinchuk
Tomsk National Research Medical Center of the Russian Academy of Science
Email: annakalinchuk2022@gmail.com
ORCID iD: 0000-0003-2106-3513
SPIN-code: 3763-0291
Russian Federation, Tomsk
Elisaveta A. Tsarenkova
Tomsk National Research Medical Center of the Russian Academy of Science
Email: lisatsarenkova@mail.ru
ORCID iD: 0009-0009-7955-1625
SPIN-code: 2631-7770
Russian Federation, Tomsk
Evgeniia S. Grigoryeva
Tomsk National Research Medical Center of the Russian Academy of Science
Email: grigoryeva.es@gmail.com
ORCID iD: 0000-0003-4671-6306
SPIN-code: 7396-7570
MD, Cand. Sci. (Medicine)
Russian Federation, TomskIrina V. Larionova
Tomsk National Research Medical Center of the Russian Academy of Science
Email: larionovaiv@onco.tnimc.ru
ORCID iD: 0000-0001-5758-7330
SPIN-code: 6272-8422
MD, Cand. Sci. (Medicine)
Russian Federation, TomskNataliya O. Popova
Tomsk National Research Medical Center of the Russian Academy of Science
Email: popova75tomsk@mail.ru
ORCID iD: 0000-0001-5294-778X
SPIN-code: 7672-1029
MD, Cand. Sci. (Medicine)
Russian Federation, TomskLiubov A. Tashireva
Tomsk National Research Medical Center of the Russian Academy of Science
Email: tashireva@oncology.tomsk.ru
ORCID iD: 0000-0003-2061-8417
SPIN-code: 4371-5340
MD, Dr. Sci. (Medicine)
Russian Federation, TomskReferences
- Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19(2):91–113. doi: 10.1038/s41571-021-00565-2 EDN: SGQCCK
- Abdou Y, Goudarzi A, Yu JX, et al. Immunotherapy in triple negative breast cancer: beyond checkpoint inhibitors. NPJ Breast Cancer. 2022;8(1):121. doi: 10.1038/s41523-022-00486-y
- Marra A, Trapani D, Viale G, et al. Practical classification of triple-negative breast cancer: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer. 2020;6:54. doi: 10.1038/s41523-020-00197-2 EDN: CCHKJE
- Wang XQ, Danenberg E, Huang CS, et al. Spatial predictors of immunotherapy response in triple-negative breast cancer. Nature. 2023;621(7980):868–876. doi: 10.1038/s41586-023-06498-3 EDN: JYDCVM
- Mateiou C, Lokhande L, Diep LH, et al. Spatial tumor immune microenvironment phenotypes in ovarian cancer. NPJ Precis Oncol. 2024;8(1):148. doi: 10.1038/s41698-024-00640-8 EDN: YMZZEH
- Andersson A, Larsson L, Stenbeck L, et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat Commun. 2021;12(1):6012. doi: 10.1038/s41467-021-26271-2 EDN: CDDRXX
- Bareche Y, Buisseret L, Gruosso T, et al. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: towards an optimized treatment approach. J Natl Cancer Inst. 2020;112(7):708–719. doi: 10.1093/jnci/djz208 EDN: RWVOIQ
- Bareham B, Dibble M, Parsons M. Defining and modeling dynamic spatial heterogeneity within tumor microenvironments. Curr Opin Cell Biol. 2024;90:102422. doi: 10.1016/j.ceb.2024.102422 EDN: XJLEFI
- Cheng X, Cao Y, Liu X, et al. Single-cell and spatial omics unravel the spatiotemporal biology of tumour border invasion and haematogenous metastasis. Clin Transl Med. 2024;14(10):e70036. doi: 10.1002/ctm2.70036 EDN: TEJAIU
- Ben-Chetrit N, Niu X, Sotelo J, et al. Breast Cancer macrophage heterogeneity and self-renewal are determined by spatial localization. bioRxiv [Preprint]. 2023. doi: 10.1101/2023.10.24.563749
- Chu X, Tian Y, Lv C. Decoding the spatiotemporal heterogeneity of tumor-associated macrophages. Mol Cancer. 2024 Jul 27;23(1):150. doi: 10.1186/s12943-024-02064-1
- Hsieh WC, Budiarto BR, Wang YF, et al. Spatial multi-omics analyses of the tumor immune microenvironment. J Biomed Sci. 2022;29(1):96. doi: 10.1186/s12929-022-00879-y EDN: KAPUNM
- Tashireva L, Grigoryeva E, Alifanov V, et al. Spatial heterogeneity of integrins and their ligands in primary breast tumors. Discov Med. 2023;35(178):910–920. doi: 10.24976/Discov.Med.202335178.86 EDN: SOBBRS
- Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets — update. Nucleic Acids Res. 2013;41(Database issue):D991–5. doi: 10.1093/nar/gks1193
- Hao Y, Stuart T, Kowalski MH, et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat Biotechnol. 2024;42(2):293–304. doi: 10.1038/s41587-023-01767-y EDN: FSLREQ
- Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20(1):296. doi: 10.1186/s13059-019-1874-1 EDN: TOZJIU
- Korsunsky I, Millard N, Fan J, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16(12):1289–1296. doi: 10.1038/s41592-019-0619-0 EDN: XWCHRN
- Mages S, Moriel N, Avraham-Davidi I, et al. TACCO unifies annotation transfer and decomposition of cell identities for single-cell and spatial omics. Nat Biotechnol. 2023;41(10):1465–1473. doi: 10.1038/s41587-023-01657-3 EDN: YMTDTX
- Wu SZ, Al-Eryani G, Roden DL, et al. A single-cell and spatially resolved atlas of human breast cancers. Nat Genet. 2021;53(9):1334–1347. doi: 10.1038/s41588-021-00911-1 EDN: ODYYFW
- Blighe K, Rana S, Lewis M. EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. CitHub. 2018. Available at: https://github.com/kevinblighe/EnhancedVolcano
- Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–W97. doi: 10.1093/nar/gkw377
- Liu M, Bertolazzi G, Sridhar S, et al. Spatially-resolved transcriptomics reveal macrophage heterogeneity and prognostic significance in diffuse large B-cell lymphoma. Nat Commun. 2024;15(1):2113. doi: 10.1038/s41467-024-46220-z EDN: HOZJWS
- Lemaitre L, Adeniji N, Suresh A, et al. Spatial analysis reveals targetable macrophage-mediated mechanisms of immune evasion in hepatocellular carcinoma minimal residual disease. Nat Cancer. 2024;5(10):1534–1556. doi: 10.1038/s43018-024-00828-8 EDN: EFJFBW
- Yang C, Wei C, Wang S, et al. Elevated CD163+/CD68+ ratio at tumor invasive front is closely associated with aggressive phenotype and poor prognosis in Colorectal Cancer. Int J Biol Sci. 2019;15(5):984–998. doi: 10.7150/ijbs.29836
- Liu T, Larionova I, Litviakov N, et al. Tumor-associated macrophages in human breast cancer produce new monocyte attracting and pro-angiogenic factor YKL-39 indicative for increased metastasis after neoadjuvant chemotherapy. Oncoimmunology. 2018;7(6):e1436922. doi: 10.1080/2162402X.2018.1436922 EDN: XXISCL
- Gruosso T, Gigoux M, Manem VSK, et al. Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers. J Clin Invest. 2019;129(4):1785–1800. doi: 10.1172/JCI96313
- Abdul-Rahman T, Ghosh S, Badar SM, et al. The paradoxical role of cytokines and chemokines at the tumor microenvironment: a comprehensive review. Eur J Med Res. 2024;29(1):124. doi: 10.1186/s40001-024-01711-z EDN: GZSNQP
- Vitiello GAF, Ferreira WAS, Cordeiro de Lima VC, Medina TDS. Antiviral responses in cancer: boosting antitumor immunity through activation of interferon pathway in the tumor microenvironment. Front Immunol. 2021;12:782852. doi: 10.3389/fimmu.2021.782852 EDN: WBMWYF
- Wang Y, Li J, Nakahata S, Iha H. Complex role of regulatory T Cells (Tregs) in the tumor microenvironment: their molecular mechanisms and bidirectional effects on cancer progression. Int J Mol Sci. 2024;25(13):7346. doi: 10.3390/ijms25137346 EDN: DHMKJI
- Zhou G, Yang L, Gray A, et al. The role of desmosomes in carcinogenesis. Onco Targets Ther. 2017;10:4059–4063. doi: 10.2147/OTT.S136367
- Oshi M, Newman S, Tokumaru Y, et al. Intra-tumoral angiogenesis is associated with inflammation, immune reaction and metastatic recurrence in breast cancer. Int J Mol Sci. 2020;21(18):6708. doi: 10.3390/ijms21186708 EDN: ORZLIH
- Uddin MN, Wang X. Identification of key tumor stroma-associated transcriptional signatures correlated with survival prognosis and tumor progression in breast cancer. Breast Cancer. 2022;29(3):541–561. doi: 10.1007/s12282-022-01332-6 EDN: GGCWRN
- Wohlfeil SA, Olsavszky A, Irkens AL, et al. Deficiency of stabilin-1 in the context of hepatic melanoma metastasis. Cancers (Basel). 2024;16(2):441. doi: 10.3390/cancers16020441 EDN: NZYMVI
- Hu J, Ma Y, Ma J, et al. Macrophage-derived SPARC attenuates M2-mediated pro-tumour phenotypes. J Cancer. 2020;11(10):2981–2992. doi: 10.7150/jca.39651 EDN: BRYUHQ
- Marigo I, Trovato R, Hofer F, et al. Disabled homolog 2 controls prometastatic activity of tumor-associated macrophages. Cancer Discov. 2020;10(11):1758–1773. doi: 10.1158/2159-8290.CD-20-0036 EDN: NMLBVW
- Gu X, Li D, Wu P, et al. Revisiting the CXCL13/CXCR5 axis in the tumor microenvironment in the era of single-cell omics: Implications for immunotherapy. Cancer Lett. 2024;605:217278. doi: 10.1016/j.canlet.2024.217278 EDN: VOLQRD
- Tokunaga R, Zhang W, Naseem M, et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation — A target for novel cancer therapy. Cancer Treat Rev. 2018;63:40–47. doi: 10.1016/j.ctrv.2017.11.007
- Li Y, Liang M, Lin Y, et al. Transcriptional expressions of CXCL9/10/12/13 as prognosis factors in breast cancer. J Oncol. 2020;2020:4270957. doi: 10.1155/2020/4270957 EDN: GJACFU
- Cardoso AP, Pinto ML, Castro F, et al. The immunosuppressive and pro-tumor functions of CCL18 at the tumor microenvironment. Cytokine Growth Factor Rev. 2021;60:107–119. doi: 10.1016/j.cytogfr.2021.03.005 EDN: RLLHBK
- Winkler J, Tan W, Diadhiou CM, et al. Single-cell analysis of breast cancer metastasis reveals epithelial-mesenchymal plasticity signatures associated with poor outcomes. J Clin Invest. 2024;134(17):e164227. doi: 10.1172/JCI164227 EDN: WYURDT
- Sharma N, Atolagbe OT, Ge Z, Allison JP. LILRB4 suppresses immunity in solid tumors and is a potential target for immunotherapy. J Exp Med. 2021;218(7):e20201811. doi: 10.1084/jem.20201811 EDN: LRYYKP
- Liu H, Yang J, Zhang J, et al. Molecular regulatory mechanism of LILRB4 in the immune response. Cent Eur J Immunol. 2023;48(1):43–47. doi: 10.5114/ceji.2023.125238 EDN: LLHZWY
- Yang T, Qian Y, Liang X, et al. LILRB4, an immune checkpoint on myeloid cells. Blood Sci. 2022;4(2):49–56. doi: 10.1097/BS9.0000000000000109 EDN: APHCPT
- Huang X, Xie X, Kang N, et al. SERPINB5 is a novel serum diagnostic biomarker for gastric high-grade intraepithelial neoplasia and plays a role in regulation of macrophage phenotypes. Transl Oncol. 2023;37:101757. doi: 10.1016/j.tranon.2023.101757 EDN: ZNQZUQ
Supplementary files
