Epidermal growth factor receptor as a target of antitumor activity of binase mutants

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The epidermal growth factor receptor (EGFR) is one of the key proteins in cell signaling that regulates mitogen-activated protein kinase (MAPK) pathways. EGFR dysregulation is associated with various neoplasms, highlighting the importance of developing targeted EGFR inhibitors. Binase, a ribonuclease (RNase) from Bacillus pumilus, is a promising antitumor agent capable of interacting with EGFR. Its cytotoxic potential is primarily determined by its activity against intracellular RNA. Binase mutants with reduced catalytic activity, K26A and H101E, also demonstrate antitumor properties.

AIM: This study aimed to assess the effect of interactions between binase mutants and EGFR on their cytotoxic potential.

METHODS: The antiproliferative activity of binase and its mutants K26A and H101E, with residual catalytic activity of 11.0% and 0.02%, respectively, was evaluated using the MTT assay in A431 epidermoid carcinoma cells, which overexpress wild-type EGFR. Immunofluorescence analysis was used to examine the interactions of RNases with EGFR and their ability to modulate the MAPK/ERK pathway. Hypothetical protein–protein interaction models were generated using computational modeling. The antimigratory activity of RNases was assessed using the standard scratch assay.

RESULTS: Binase and its mutants reduced the proliferative activity of A431 tumor cells by 40%. Pretreatment of cells with the monoclonal anti-EGFR antibody cetuximab attenuated the cytotoxic potential of binase mutants. Computational modeling indicated that the tested RNases may interact with EGFR, with binase having a higher affinity for the ATP-binding site of the tyrosine kinase domain and the mutant derivatives binding preferentially to regions involved in receptor endocytosis. This may underlie the observed differences in EGFR internalization rates. Unlike binase and the K26A mutant, the catalytically inactive H101E mutant lacks antimigratory activity, indicating the importance of maintaining a certain level of enzymatic activity.

CONCLUSION: EGFR is a target of the cytotoxic activity of binase mutants, and their interaction inhibits the MAPK/ERK signaling pathway and causes tumor cell death.

About the authors

Alsu I. Nadyrova

Kazan (Volga Region) Federal University

Author for correspondence.
Email: alsu.nadyrova@yandex.ru
ORCID iD: 0000-0002-1312-0605
SPIN-code: 9618-7816
Russian Federation, Kazan

Elena V. Dudkina

Kazan (Volga Region) Federal University

Email: ElVDudkina@kpfu.ru
ORCID iD: 0000-0002-2817-1384
SPIN-code: 5874-7417

Cand. Sci. (Biology), Associate Professor

Russian Federation, Kazan

Elvira M. Khafizova

Kazan (Volga Region) Federal University

Email: elvirra.khafizova@yandex.ru
ORCID iD: 0009-0004-3408-9493
Russian Federation, Kazan

Alexander D. Pestov

Kazan (Volga Region) Federal University

Email: alexander.p3stov@yandex.ru
ORCID iD: 0009-0000-5189-8111
Russian Federation, Kazan

Alexander S. Kosnyrev

Kazan (Volga Region) Federal University

Email: AleSKosnyrev@kpfu.ru
ORCID iD: 0009-0008-4341-5181
SPIN-code: 8593-7837
Russian Federation, Kazan

Vera V. Ulyanova

Kazan (Volga Region) Federal University

Email: Vera.Uljanova@kpfu.ru
ORCID iD: 0000-0003-1768-3314
SPIN-code: 8479-4593

Cand. Sci. (Biology), Associate Professor

Russian Federation, Kazan

Olga N. Ilinskaya

Kazan (Volga Region) Federal University

Email: Olga.Ilinskaya@kpfu.ru
ORCID iD: 0000-0001-6936-2032
SPIN-code: 7972-5807

Doc. Sci. (Biology), Professor

Russian Federation, Kazan

References

  1. Patutina O, Mironova N, Ryabchikova E, et al. Inhibition of metastasis development by daily administration of ultralow doses of RNase A and DNase I. Biochimie. 2011;93(4):689–696. doi: 10.1016/j.biochi.2010.12.011 EDN: OAEFGP
  2. Fiorini C, Cordani M, Gotte G, et al. Onconase induces autophagy sensitizing pancreatic cancer cells to gemcitabine and activates Akt/mTOR pathway in a ROS-dependent manner. Biochim Biophys Acta. 2015;1853(3):549–560. doi: 10.1016/j.bbamcr.2014.12.016
  3. Wang Z, Lin F, Liu J, Qiu F. A novel ribonuclease from rana chensinensis and its potential for the treatment of human breast cancer. Cancer Biother Radiopharm. 2015;30(9):380–385. doi: 10.1089/cbr.2015.1891
  4. Olmo N, Turnay J, González de Buitrago G, et al. Cytotoxic mechanism of the ribotoxin alpha-sarcin. Induction of cell death via apoptosis. Eur J Biochem. 2001;268(7):2113–2123. doi: 10.1046/j.1432-1327.2001.02086.x EDN: BAHIET
  5. Surchenko YV, Dudkina EV, Nadyrova AI, et al. Cytotoxic potential of novel bacillary ribonucleases balnase and balifase. BioNanoSci. 2020;10:409–415. doi: 10.1007/s12668-020-00720-6 EDN: HRFZKF
  6. Edelweiss E, Balandin TG, Ivanova JL, et al. Barnase as a new therapeutic agent triggering apoptosis in human cancer cells. PLoS ONE 2008;3(6):e2434. doi: 10.1371/journal.pone.0002434 EDN: MNOCFD
  7. Smith MR, Newton DL, Mikulski SM, Rybak SM. Cell cycle-related differences in susceptibility of NIH/3T3 cells to ribonucleases. Exp Cell Res. 1999;247(1):220–32. doi: 10.1006/excr.1998.4317
  8. Futami J, Maeda T, Kitazoe M, et al. Preparation of potent cytotoxic ribonucleases by cationization: enhanced cellular uptake and decreased interaction with ribonuclease inhibitor by chemical modification of carboxyl groups. Biochemistry. 2001;40(25): 7518–7524. doi: 10.1021/bi010248g EDN: YIKIYO
  9. Nadyrova AI, Kosnyrev AS, Ulyanova VV, et al. Efficiency of Escherichia coli and Bacillus subtilis expression systems for production of binase mutants. Mol Biol. 2023;57: 825–835. doi: 10.1134/S002689332305014x EDN: KSMOBT
  10. Ilinskaya ON, Karamova NS, Ivanchenko OB, Kipenskaya LV. SOS-inducing ability of native and mutant microbial ribonucleases. Mutat Res. 1996;354(2):203–209. doi: 10.1016/0027-5107(96)00012-7 EDN: LDTISF
  11. Ilinskaya ON, Vamvakas S. Nephrotoxic effects of bacterial ribonucleases in the isolated perfused rat kidney. Toxicology. 1997;120(1):55–63. doi: 10.1016/s0300-483x(97)03639-1 EDN: LECWCX
  12. Mitkevich VA, Petrushanko IY, Spirin PV, et al. Sensitivity of acute myeloid leukemia Kasumi-1 cells to binase toxic action depends on the expression of KIT and АML1-ETO oncogenes. Cell Cycle. 2011;10(23):4090–4097. doi: 10.4161/cc.10.23.18210 EDN: PEGOXR
  13. Mitkevich VA, Burnysheva KM, Petrushanko IY, et al. Binase treatment increases interferon sensitivity and apoptosis in SiHa cervical carcinoma cells by downregulating E6 and E7 human papilloma virus oncoproteins. Oncotarget. 2017;8(42):72666–72675. doi: 10.18632/oncotarget.20199 EDN: BXLHXZ
  14. Dudkina E, Ulyanova V, Asmandiyarova V, et al. Two main cancer biomarkers as molecular targets of binase antitumor activity. Biomed Res Int. 2024;2024:8159893. doi: 10.1155/2024/8159893 EDN: XSDCEI
  15. Dudkina EV, Ulyanova VV, Ilinskaya ON. Supramolecular organization as a factor of ribonuclease cytotoxicity. Acta Naturae. 2020;12(3):24–33. doi: 10.32607/actanaturae.11000 EDN: NYODHM
  16. Ilinskaya ON, Singh I, Dudkina E, et al. Direct inhibition of oncogenic KRAS by Bacillus pumilus ribonuclease (binase). Biochim Biophys Acta. 2016;1863(7 Pt A):1559–1567. doi: 10.1016/j.bbamcr.2016.04.005 EDN: SMENQQ
  17. Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). 2017;9(5):52. doi: 10.3390/cancers9050052 EDN: YENNXG
  18. Collins TJ. ImageJ for microscopy. Biotechniques. 2007;43(1 Suppl.):25–30. doi: 10.2144/000112517
  19. Vershinina VI, Dudkina EV, Ulyanova VV, et al. Specific antibodies against binase: Preparation and application. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki. 2021;163(4):557–568. doi: 10.26907/2542-064X.2021.4.557-568 EDN: ELQZOP
  20. Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630(8016):493–500. doi: 10.1038/s41586-024-07487-w EDN: XBTLYU
  21. Kozakov D, Hall DR, Xia B, et al. The ClusPro web server for protein-protein docking. Nat Protoc. 2017;12(2):255–278. doi: 10.1038/nprot.2016.169 EDN: YWVTYJ
  22. Sukhwal A, Sowdhamini R. Oligomerisation status and evolutionary conservation of interfaces of protein structural domain superfamilies. Mol Biosyst. 2013;9(7):1652–1661. doi: 10.1039/c3mb25484d
  23. Tong J, Taylor P, Peterman SM, et al. Epidermal growth factor receptor phosphorylation sites Ser991 and Tyr998 are implicated in the regulation of receptor endocytosis and phosphorylations at Ser1039 and Thr1041. Mol Cell Proteomics. 2009;8(9):2131–2144. doi: 10.1074/mcp.M900148-MCP200
  24. Cheng WL, Feng PH, Lee KY, et al. The role of EREG/EGFR pathway in tumor progression. Int J Mol Sci. 2021;22(23):12828. doi: 10.3390/ijms222312828 EDN: MIUMNV
  25. Saoudi González N, Ros J, Baraibar I, et al. Cetuximab as a key partner in personalized targeted therapy for metastatic colorectal cancer. Cancers (Basel). 2024;16(2):412. doi: 10.3390/cancers16020412 EDN: ZDZGZA
  26. Price T, Ang A, Boedigheimer M, et al. Frequency of S492R mutations in the epidermal growth factor receptor: analysis of plasma DNA from patients with metastatic colorectal cancer treated with panitumumab or cetuximab monotherapy. Cancer Biol Ther. 2020;21(10):891–898. doi: 10.1080/15384047.2020.1798695 EDN: MMMBMR
  27. Zhang D, Zhao J, Yang Y, et al. Fourth-generation EGFR-TKI to overcome C797S mutation: past, present, and future. J Enzyme Inhib Med Chem. 2025;40(1):2481392. doi: 10.1080/14756366.2025.2481392
  28. Blandin AF, Cruz Da Silva E, Mercier MC, et al. Gefitinib induces EGFR and α5β1 integrin co-endocytosis in glioblastoma cells. Cell Mol Life Sci. 2021;78(6):2949–2962. doi: 10.1007/s00018-020-03686-6 EDN: UCCMGP
  29. Okada Y, Kimura T, Nakagawa T, et al. EGFR downregulation after anti-EGFR therapy predicts the antitumor effect in colorectal cancer. Mol Cancer Res. 2017;15(10):1445–1454. doi: 10.1158/1541-7786.MCR-16-0383 EDN: YHMLAI
  30. Ren Y, Hong Y, He W, et al. EGF/EGFR promotes salivary adenoid cystic carcinoma cell malignant neural invasion via activation of PI3K/AKT and MEK/ERK signaling. Curr Cancer Drug Targets. 2022;22(7): 603–616. doi: 10.2174/1568009622666220411112312 EDN: OISHZY
  31. Mohamed ISE, Sen’kova AV, Nadyrova AI, et al. Antitumour activity of the ribonuclease binase from Bacillus pumilus in the RLS40 tumour model is associated with the reorganisation of the miRNA network and reversion of cancer-related cascades to normal functioning. Biomolecules. 2020;10(11):1509. doi: 10.3390/biom10111509 EDN: QGHAKP
  32. Tamas T, Baciut M, Nutu A, et al. Is miRNA regulation the key to controlling non-melanoma skin cancer evolution? Genes (Basel). 2021;12(12):1929. doi: 10.3390/genes12121929 EDN: NVMYWA

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).