Properties of osteoplastic matrices based on polylactide microparticles and platelet-rich plasma impregnated with adenoviral constructs carrying BMP2 gene

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The number of patients requiring bone graft procedures is rising every year. Gene-activated osteoplastic matrices represent a promising alternative to traditional bone grafting methods, as they enable sustained and targeted expression of osteoinductive genes directly within the defect area.

AIM: The work aimed to evaluate the properties of gene-activated matrices based on polylactide microparticles and platelet-rich plasma impregnated with adenoviral constructs carrying the BMP2 gene.

METHODS: Light and fluorescence microscopy, flow cytometry, spectrophotometry, real-time polymerase chain reaction, histological staining, histomorphometric analysis, MTT assay, and biochemical assays were performed.

RESULTS: The optimal concentration of adenoviral vectors carrying the BMP2 gene for impregnation into matrices based on polylactide microparticles and platelet-rich plasma was determined using the MTT assay and flow cytometry. The resulting gene-activated matrices were shown to be non-cytotoxic and to stimulate the active proliferation of multipotent mesenchymal stromal cells. As assessed by spectrophotometry, the matrices released genetic constructs in a sustained manner over 15 days. Fluorescence microscopy and real-time polymerase chain reaction confirmed effective and gradual transduction of cell cultures. Histological analysis of tissue sections obtained 28 days after intramuscular implantation in rats demonstrated in vivo biocompatibility of the matrices. The gene-activated matrices induced osteogenic differentiation of adipose tissue–derived multipotent mesenchymal stromal cells, confirmed by increased expression of osteogenic differentiation markers, elevated alkaline phosphatase activity, and extracellular matrix mineralization.

CONCLUSION: The developed gene-activated matrices composed of polylactide microparticles and platelet-rich plasma and incorporating adenoviral vectors carrying BMP2 gene demonstrated effectiveness in in vitro experiments and may be used for repair of bone tissue defects.

About the authors

Viktoriia P. Basina

Research Centre for Medical Genetics

Author for correspondence.
Email: vika.basina12@gmail.com
ORCID iD: 0009-0006-0127-6502
SPIN-code: 7315-1862
Russian Federation, Moscow

Irina A. Nedorubova

Research Centre for Medical Genetics

Email: nedorubova.ia@gmail.com
ORCID iD: 0000-0001-8472-7116
SPIN-code: 1548-6998

Cand. Sci. (Biology)

Russian Federation, Moscow

Victoria O. Chernomyrdina

Research Centre for Medical Genetics

Email: victoria-mok@yandex.ru
ORCID iD: 0000-0003-3828-8495
SPIN-code: 6988-4309
Russian Federation, Moscow

Anastasiia Yu. Meglei

Research Centre for Medical Genetics

Email: an.megley95@yandex.ru
ORCID iD: 0000-0003-2970-7176
SPIN-code: 5569-9070
Russian Federation, Moscow

Oleg V. Makhnach

Research Centre for Medical Genetics

Email: buben6@yandex.ru
ORCID iD: 0000-0002-2707-8313
SPIN-code: 1453-9189

Cand. Sci. (Chemistry)

Russian Federation, Moscow

Anton V. Mironov

National Research Centre "Kurchatov Institute"

Email: scftlab@gmail.com
ORCID iD: 0000-0002-8173-0253
SPIN-code: 7185-9165

Cand. Sci. (Chemistry)

Russian Federation, Moscow

Timofei E. Grigoriev

National Research Centre "Kurchatov Institute"

Email: timgrigo@yandex.ru
ORCID iD: 0000-0001-8197-0188
SPIN-code: 6159-4220

Cand. Sci. (Physics and Mathematics)

Russian Federation, Moscow

Yuriy D. Zagoskin

National Research Centre "Kurchatov Institute"

Email: zagos@inbox.ru
ORCID iD: 0000-0002-5825-8333
SPIN-code: 8293-5020

Cand. Sci. (Chemistry)

Russian Federation, Moscow

Dmitry V. Goldshtein

Research Centre for Medical Genetics

Email: dvgoldshtein@gmail.com
ORCID iD: 0000-0003-2438-1605
SPIN-code: 7714-9099

Dr. Sci. (Biology), Professor

Russian Federation, Moscow

Tatiana B. Bukharova

Research Centre for Medical Genetics

Email: bukharova-rmt@yandex.ru
ORCID iD: 0000-0003-0481-256X
SPIN-code: 2092-5580

Cand. Sci. (Biology)

Russian Federation, Moscow

References

  1. Xue N, Ding X, Huang R, et al. Bone tissue engineering in the treatment of bone defects. Pharmaceuticals (Basel). 2022;15(7):879. doi: 10.3390/ph15070879 EDN: XSCCJQ
  2. Vantucci CE, Krishan L, Cheng A, et al. BMP-2 delivery strategy modulates local bone regeneration and systemic immune responses to complex extremity trauma. Biomater Sci. 2021;9(5):1668–1682. doi: 10.1039/d0bm01728k EDN: PYEJBW
  3. Ball JR, Shelby T, Hernandez F, et al. Delivery of growth factors to enhance bone repair. Bioengineering (Basel). 2023;10(11):1252. doi: 10.3390/bioengineering10111252 EDN: FOWHOY
  4. D’Mello S, Atluri K, Geary SM, et al. Bone regeneration using gene-activated matrices. AAPS J. 2017;19(1):43–53. doi: 10.1208/s12248-016-9982-2 EDN: PRGLNV
  5. Idumah CI. Progress in polymer nanocomposites for bone regeneration and engineering. Polymers and Polymer Composites. 2020. doi: 10.1177/0967391120913658 EDN: FPVSUQ
  6. Grémare A, Guduric V, Bareille R, et al. Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Mater Res A. 2018;106(4):887–894. doi: 10.1002/jbm.a.36289 EDN: YEAEHJ
  7. Singhvi MS, Zinjarde SS, Gokhale DV. Polylactic acid: synthesis and biomedical applications. J Appl Microbiol. 2019;127(6):1612–1626. doi: 10.1111/jam.14290
  8. Zohoor S, Abolfathi N, Solati-Hashjin M. Accelerated degradation mechanism and mechanical behavior of 3D-printed PLA scaffolds for bone regeneration. Iran Polym J. 2023;32(10):1209–1227. doi: 10.1007/s13726-023-01191-8 EDN: UZWXDE
  9. Li X, Jin Q, Xu H, et al. Effect of polylactic acid membrane on guided bone regeneration in anterior maxillary implantation. Med Sci Monit. 2023;29:e938566. doi: 10.12659/MSM.938566 EDN: IOBMEQ
  10. Nedorubova IA, Bukharova TB, Mokrousova VO, et al. Comparative efficiency of gene-activated matrices based on chitosan hydrogel and PRP impregnated with BMP2 polyplexes for bone regeneration. Int J Mol Sci. 2022;23(23):14720. doi: 10.3390/ijms232314720 EDN: CHAIHO
  11. Vasilyev AV, Kuznetsova VS, Bukharova TB, et al. Osteoinductive moldable and curable bone substitutes based on collagen, BMP-2 and highly porous polylactide granules, or a mix of HAP/β-TCP. Polymers (Basel). 2021;13(22):3974. doi: 10.3390/polym13223974 EDN: RJJCJW
  12. Bukharova TB, Nedorubova IA, Mokrousova VO, et al. Adenovirus-based gene therapy for bone regeneration: a comparative analysis of in vivo and ex vivo BMP2 gene delivery. Cells. 2023;12(13):1762. doi: 10.3390/cells12131762 EDN: MOPMZE
  13. Cheng CH, Chen YW, Kai-Xing Lee A, et al. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis. J Mater Sci Mater Med. 2019;30(7):78. doi: 10.1007/s10856-019-6279-x EDN: SARLWS
  14. Buharova TB, Volkov AV, Antonov EN, et al. Tissue-engineered construction made of adipose derived multipotent mesenchymal stromal cells, polylactide scaffolds and platelet gel. Kletochnaja transplantologija i tkanevaja inzhenerija. 2013;8(4):61–68. EDN: RYFPSP
  15. Zhang N, Wu YP, Qian SJ, et al. Research progress in the mechanism of effect of PRP in bone deficiency healing. ScientificWorldJournal. 2013;2013:134582. doi: 10.1155/2013/134582
  16. Park EJ, Kim ES, Weber HP, et al. Improved bone healing by angiogenic factor-enriched platelet-rich plasma and its synergistic enhancement by bone morphogenetic protein-2. Int J Oral Maxillofac Implants. 2008;23(5):818–826.
  17. Meglei AY, Nedorubova IA, Basina VP, et al. Collagen-platelet-rich plasma mixed hydrogels as a pBMP2 delivery system for bone defect regeneration. Biomedicines. 2024;12(11):2461. doi: 10.3390/biomedicines12112461 EDN: BJUCGX
  18. Meglei AY, Nedorubova IA, Mokrousova VO, et al. Evaluation of the properties of osteogenic gene-activated matrices based on hydrogels impregnated with polyplexes with the BMP2 gene. Genes & cells. 2022;17(4):133–141. doi: 10.23868/gc375315 EDN: IJQPBH
  19. Salazar VS, Gamer LW, Rosen V. BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol. 2016;12(4):203–221. doi: 10.1038/nrendo.2016.12
  20. Khan SN, Bostrom MP, Lane JM. Bone growth factors. Orthop Clin North Am. 2000;31(3):375–388. doi: 10.1016/s0030-5898(05)70157-7
  21. Seeherman HJ, Li XJ, Smith E, Wozney JM. rhBMP-2/calcium phosphate matrix induces bone formation while limiting transient bone resorption in a nonhuman primate core defect model. J Bone Joint Surg Am. 2012;94(19):1765–1776. doi: 10.2106/JBJS.K.00523
  22. Hernández A, Sánchez E, Soriano I, et al. Material-related effects of BMP-2 delivery systems on bone regeneration. Acta Biomater. 2012;8(2):781–791. doi: 10.1016/j.actbio.2011.10.008
  23. Chung YI, Ahn KM, Jeon SH, et al. Enhanced bone regeneration with BMP-2 loaded functional nanoparticle-hydrogel complex. J Control Release. 2007;121(1-2):91–99. doi: 10.1016/j.jconrel.2007.05.029 EDN: KIRBFN
  24. Chen B, Lin H, Wang J, et al. Homogeneous osteogenesis and bone regeneration by demineralized bone matrix loading with collagen-targeting bone morphogenetic protein-2. Biomaterials. 2007;28(6):1027–1035. doi: 10.1016/j.biomaterials.2006.10.013 EDN: KIFYFR
  25. Seo JI, Lim JH, Jo WM, et al. Effects of rhBMP-2 with various carriers on maxillofacial bone regeneration through computed tomography evaluation. Maxillofac Plast Reconstr Surg. 2023;45(1):40. doi: 10.1186/s40902-023-00405-6 EDN: GWLCFD
  26. James AW, LaChaud G, Shen J, et al. A review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng Part B Rev. 2016;22(4):284–297. doi: 10.1089/ten.TEB.2015.0357
  27. Bez M, Pelled G, Gazit D. BMP gene delivery for skeletal tissue regeneration. Bone. 2020;137:115449. doi: 10.1016/j.bone.2020.115449 EDN: KHXVHS
  28. Syyam A, Nawaz A, Ijaz A, et al. Adenovirus vector system: construction, history and therapeutic applications. Biotechniques. 2022;73(6):297–305. doi: 10.2144/btn-2022-0051 EDN: ISKEQF
  29. Bukharova TB, Arutyunyan IV, Shustrov SA, et al. Tissue engineering construct on the basis of multipotent stromal adipose tissue cells and Osteomatrix for regeneration of the bone tissue. Bull Exp Biol Med. 2011;152(1):153–158. doi: 10.1007/s10517-011-1476-8 EDN: RHBVWV
  30. Vasilyev AV, Kuznetsova VS, Bukharova TB, et al. Osteoinductive potential of highly porous polylactide granules and Bio-Oss impregnated with low doses of BMP-2. IOP Conf Ser: Earth Environ. 2020;421(5):052035. doi: 10.1088/1755-1315/421/5/052035 EDN: JFZKWL
  31. Bukharova TB, Logovskaya LV, Volkov AV, et al. Adenoviral transduction of multipotent mesenchymal stromal cells from human adipose tissue with bone morphogenetic protein BMP-2 gene. Bull Exp Biol Med. 2013;156(1):122–126. doi: 10.1007/s10517-013-2294-y EDN: QPLCTT
  32. Köllmer M, Buhrman JS, Zhang Y, Gemeinhart RA. Markers are shared between adipogenic and osteogenic differentiated mesenchymal stem cells. J Dev Biol Tissue Eng. 2013;5(2):18–25. doi: 10.5897/JDBTE2013.0065
  33. Kamimura K, Suda T, Zhang G, Liu D. Advances in gene delivery systems. Pharmaceut Med. 2011;25(5):293–306. doi: 10.2165/11594020-000000000-00000
  34. Jooss K, Chirmule N. Immunity to adenovirus and adeno-associated viral vectors: implications for gene therapy. Gene Ther. 2003;10(11):955–963. doi: 10.1038/sj.gt.3302037
  35. Hoeben RC, Uil TG. Adenovirus DNA replication. Cold Spring Harb Perspect Biol. 2013;5(3):a013003. doi: 10.1101/cshperspect.a013003
  36. Phillips JE, Gersbach CA, García AJ. Virus-based gene therapy strategies for bone regeneration. Biomaterials. 2007;28(2):211–229. doi: 10.1016/j.biomaterials.2006.07.032 EDN: MCMEXB
  37. Zhu Y, Li D, Zhang K, et al. Novel synthesized nanofibrous scaffold efficiently delivered hBMP-2 encoded in adenoviral vector to promote bone regeneration. J Biomed Nanotechnol. 2017;13(4):437–446. doi: 10.1166/jbn.2017.2361
  38. Zhao Z, Zhao Q, Gu B, et al. Minimally invasive implantation and decreased inflammation reduce osteoinduction of biomaterial. Theranostics. 2020;10(8):3533–3545. doi: 10.7150/thno.39507 EDN: UOBQLD
  39. Yang D, Xiao J, Wang B, et al. The immune reaction and degradation fate of scaffold in cartilage/bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;104:109927. doi: 10.1016/j.msec.2019.109927 EDN: SSCZSV
  40. Wang Y, Bruggeman KF, Franks S, et al. Is viral vector gene delivery more effective using biomaterials? Adv Healthc Mater. 2021;10(1):e2001238. doi: 10.1002/adhm.202001238 EDN: DPMJUN
  41. Baghersad S, Bolandi B, Imani R, et al. An overview of PRP-delivering scaffolds for bone and cartilage tissue engineering. J Bionic Eng. 2024;21:674–693; doi: 10.1007/s42235-023-00471-6 EDN: QXTJLM
  42. Välimäki VV, Yrjans JJ, Vuorio E, Aro HT. Combined effect of BMP-2 gene transfer and bioactive glass microspheres on enhancement of new bone formation. J Biomed Mater Res A. 2005;75(3):501–509. doi: 10.1002/jbm.a.30236

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).