Properties of osteoplastic matrices based on polylactide microparticles and platelet-rich plasma impregnated with adenoviral constructs carrying BMP2 gene
- Authors: Basina V.P.1, Nedorubova I.A.1, Chernomyrdina V.O.1, Meglei A.Y.1, Makhnach O.V.1, Mironov A.V.2, Grigoriev T.E.2, Zagoskin Y.D.2, Goldshtein D.V.1, Bukharova T.B.1
-
Affiliations:
- Research Centre for Medical Genetics
- National Research Centre "Kurchatov Institute"
- Issue: Vol 20, No 4 (2025)
- Pages: 311-324
- Section: Original Study Articles
- URL: https://ogarev-online.ru/2313-1829/article/view/381686
- DOI: https://doi.org/10.17816/gc682221
- EDN: https://elibrary.ru/ZTLJPA
- ID: 381686
Cite item
Abstract
BACKGROUND: The number of patients requiring bone graft procedures is rising every year. Gene-activated osteoplastic matrices represent a promising alternative to traditional bone grafting methods, as they enable sustained and targeted expression of osteoinductive genes directly within the defect area.
AIM: The work aimed to evaluate the properties of gene-activated matrices based on polylactide microparticles and platelet-rich plasma impregnated with adenoviral constructs carrying the BMP2 gene.
METHODS: Light and fluorescence microscopy, flow cytometry, spectrophotometry, real-time polymerase chain reaction, histological staining, histomorphometric analysis, MTT assay, and biochemical assays were performed.
RESULTS: The optimal concentration of adenoviral vectors carrying the BMP2 gene for impregnation into matrices based on polylactide microparticles and platelet-rich plasma was determined using the MTT assay and flow cytometry. The resulting gene-activated matrices were shown to be non-cytotoxic and to stimulate the active proliferation of multipotent mesenchymal stromal cells. As assessed by spectrophotometry, the matrices released genetic constructs in a sustained manner over 15 days. Fluorescence microscopy and real-time polymerase chain reaction confirmed effective and gradual transduction of cell cultures. Histological analysis of tissue sections obtained 28 days after intramuscular implantation in rats demonstrated in vivo biocompatibility of the matrices. The gene-activated matrices induced osteogenic differentiation of adipose tissue–derived multipotent mesenchymal stromal cells, confirmed by increased expression of osteogenic differentiation markers, elevated alkaline phosphatase activity, and extracellular matrix mineralization.
CONCLUSION: The developed gene-activated matrices composed of polylactide microparticles and platelet-rich plasma and incorporating adenoviral vectors carrying BMP2 gene demonstrated effectiveness in in vitro experiments and may be used for repair of bone tissue defects.
About the authors
Viktoriia P. Basina
Research Centre for Medical Genetics
Author for correspondence.
Email: vika.basina12@gmail.com
ORCID iD: 0009-0006-0127-6502
SPIN-code: 7315-1862
Russian Federation, Moscow
Irina A. Nedorubova
Research Centre for Medical Genetics
Email: nedorubova.ia@gmail.com
ORCID iD: 0000-0001-8472-7116
SPIN-code: 1548-6998
Cand. Sci. (Biology)
Russian Federation, MoscowVictoria O. Chernomyrdina
Research Centre for Medical Genetics
Email: victoria-mok@yandex.ru
ORCID iD: 0000-0003-3828-8495
SPIN-code: 6988-4309
Russian Federation, Moscow
Anastasiia Yu. Meglei
Research Centre for Medical Genetics
Email: an.megley95@yandex.ru
ORCID iD: 0000-0003-2970-7176
SPIN-code: 5569-9070
Russian Federation, Moscow
Oleg V. Makhnach
Research Centre for Medical Genetics
Email: buben6@yandex.ru
ORCID iD: 0000-0002-2707-8313
SPIN-code: 1453-9189
Cand. Sci. (Chemistry)
Russian Federation, MoscowAnton V. Mironov
National Research Centre "Kurchatov Institute"
Email: scftlab@gmail.com
ORCID iD: 0000-0002-8173-0253
SPIN-code: 7185-9165
Cand. Sci. (Chemistry)
Russian Federation, MoscowTimofei E. Grigoriev
National Research Centre "Kurchatov Institute"
Email: timgrigo@yandex.ru
ORCID iD: 0000-0001-8197-0188
SPIN-code: 6159-4220
Cand. Sci. (Physics and Mathematics)
Russian Federation, MoscowYuriy D. Zagoskin
National Research Centre "Kurchatov Institute"
Email: zagos@inbox.ru
ORCID iD: 0000-0002-5825-8333
SPIN-code: 8293-5020
Cand. Sci. (Chemistry)
Russian Federation, MoscowDmitry V. Goldshtein
Research Centre for Medical Genetics
Email: dvgoldshtein@gmail.com
ORCID iD: 0000-0003-2438-1605
SPIN-code: 7714-9099
Dr. Sci. (Biology), Professor
Russian Federation, MoscowTatiana B. Bukharova
Research Centre for Medical Genetics
Email: bukharova-rmt@yandex.ru
ORCID iD: 0000-0003-0481-256X
SPIN-code: 2092-5580
Cand. Sci. (Biology)
Russian Federation, MoscowReferences
- Xue N, Ding X, Huang R, et al. Bone tissue engineering in the treatment of bone defects. Pharmaceuticals (Basel). 2022;15(7):879. doi: 10.3390/ph15070879 EDN: XSCCJQ
- Vantucci CE, Krishan L, Cheng A, et al. BMP-2 delivery strategy modulates local bone regeneration and systemic immune responses to complex extremity trauma. Biomater Sci. 2021;9(5):1668–1682. doi: 10.1039/d0bm01728k EDN: PYEJBW
- Ball JR, Shelby T, Hernandez F, et al. Delivery of growth factors to enhance bone repair. Bioengineering (Basel). 2023;10(11):1252. doi: 10.3390/bioengineering10111252 EDN: FOWHOY
- D’Mello S, Atluri K, Geary SM, et al. Bone regeneration using gene-activated matrices. AAPS J. 2017;19(1):43–53. doi: 10.1208/s12248-016-9982-2 EDN: PRGLNV
- Idumah CI. Progress in polymer nanocomposites for bone regeneration and engineering. Polymers and Polymer Composites. 2020. doi: 10.1177/0967391120913658 EDN: FPVSUQ
- Grémare A, Guduric V, Bareille R, et al. Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Mater Res A. 2018;106(4):887–894. doi: 10.1002/jbm.a.36289 EDN: YEAEHJ
- Singhvi MS, Zinjarde SS, Gokhale DV. Polylactic acid: synthesis and biomedical applications. J Appl Microbiol. 2019;127(6):1612–1626. doi: 10.1111/jam.14290
- Zohoor S, Abolfathi N, Solati-Hashjin M. Accelerated degradation mechanism and mechanical behavior of 3D-printed PLA scaffolds for bone regeneration. Iran Polym J. 2023;32(10):1209–1227. doi: 10.1007/s13726-023-01191-8 EDN: UZWXDE
- Li X, Jin Q, Xu H, et al. Effect of polylactic acid membrane on guided bone regeneration in anterior maxillary implantation. Med Sci Monit. 2023;29:e938566. doi: 10.12659/MSM.938566 EDN: IOBMEQ
- Nedorubova IA, Bukharova TB, Mokrousova VO, et al. Comparative efficiency of gene-activated matrices based on chitosan hydrogel and PRP impregnated with BMP2 polyplexes for bone regeneration. Int J Mol Sci. 2022;23(23):14720. doi: 10.3390/ijms232314720 EDN: CHAIHO
- Vasilyev AV, Kuznetsova VS, Bukharova TB, et al. Osteoinductive moldable and curable bone substitutes based on collagen, BMP-2 and highly porous polylactide granules, or a mix of HAP/β-TCP. Polymers (Basel). 2021;13(22):3974. doi: 10.3390/polym13223974 EDN: RJJCJW
- Bukharova TB, Nedorubova IA, Mokrousova VO, et al. Adenovirus-based gene therapy for bone regeneration: a comparative analysis of in vivo and ex vivo BMP2 gene delivery. Cells. 2023;12(13):1762. doi: 10.3390/cells12131762 EDN: MOPMZE
- Cheng CH, Chen YW, Kai-Xing Lee A, et al. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis. J Mater Sci Mater Med. 2019;30(7):78. doi: 10.1007/s10856-019-6279-x EDN: SARLWS
- Buharova TB, Volkov AV, Antonov EN, et al. Tissue-engineered construction made of adipose derived multipotent mesenchymal stromal cells, polylactide scaffolds and platelet gel. Kletochnaja transplantologija i tkanevaja inzhenerija. 2013;8(4):61–68. EDN: RYFPSP
- Zhang N, Wu YP, Qian SJ, et al. Research progress in the mechanism of effect of PRP in bone deficiency healing. ScientificWorldJournal. 2013;2013:134582. doi: 10.1155/2013/134582
- Park EJ, Kim ES, Weber HP, et al. Improved bone healing by angiogenic factor-enriched platelet-rich plasma and its synergistic enhancement by bone morphogenetic protein-2. Int J Oral Maxillofac Implants. 2008;23(5):818–826.
- Meglei AY, Nedorubova IA, Basina VP, et al. Collagen-platelet-rich plasma mixed hydrogels as a pBMP2 delivery system for bone defect regeneration. Biomedicines. 2024;12(11):2461. doi: 10.3390/biomedicines12112461 EDN: BJUCGX
- Meglei AY, Nedorubova IA, Mokrousova VO, et al. Evaluation of the properties of osteogenic gene-activated matrices based on hydrogels impregnated with polyplexes with the BMP2 gene. Genes & cells. 2022;17(4):133–141. doi: 10.23868/gc375315 EDN: IJQPBH
- Salazar VS, Gamer LW, Rosen V. BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol. 2016;12(4):203–221. doi: 10.1038/nrendo.2016.12
- Khan SN, Bostrom MP, Lane JM. Bone growth factors. Orthop Clin North Am. 2000;31(3):375–388. doi: 10.1016/s0030-5898(05)70157-7
- Seeherman HJ, Li XJ, Smith E, Wozney JM. rhBMP-2/calcium phosphate matrix induces bone formation while limiting transient bone resorption in a nonhuman primate core defect model. J Bone Joint Surg Am. 2012;94(19):1765–1776. doi: 10.2106/JBJS.K.00523
- Hernández A, Sánchez E, Soriano I, et al. Material-related effects of BMP-2 delivery systems on bone regeneration. Acta Biomater. 2012;8(2):781–791. doi: 10.1016/j.actbio.2011.10.008
- Chung YI, Ahn KM, Jeon SH, et al. Enhanced bone regeneration with BMP-2 loaded functional nanoparticle-hydrogel complex. J Control Release. 2007;121(1-2):91–99. doi: 10.1016/j.jconrel.2007.05.029 EDN: KIRBFN
- Chen B, Lin H, Wang J, et al. Homogeneous osteogenesis and bone regeneration by demineralized bone matrix loading with collagen-targeting bone morphogenetic protein-2. Biomaterials. 2007;28(6):1027–1035. doi: 10.1016/j.biomaterials.2006.10.013 EDN: KIFYFR
- Seo JI, Lim JH, Jo WM, et al. Effects of rhBMP-2 with various carriers on maxillofacial bone regeneration through computed tomography evaluation. Maxillofac Plast Reconstr Surg. 2023;45(1):40. doi: 10.1186/s40902-023-00405-6 EDN: GWLCFD
- James AW, LaChaud G, Shen J, et al. A review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng Part B Rev. 2016;22(4):284–297. doi: 10.1089/ten.TEB.2015.0357
- Bez M, Pelled G, Gazit D. BMP gene delivery for skeletal tissue regeneration. Bone. 2020;137:115449. doi: 10.1016/j.bone.2020.115449 EDN: KHXVHS
- Syyam A, Nawaz A, Ijaz A, et al. Adenovirus vector system: construction, history and therapeutic applications. Biotechniques. 2022;73(6):297–305. doi: 10.2144/btn-2022-0051 EDN: ISKEQF
- Bukharova TB, Arutyunyan IV, Shustrov SA, et al. Tissue engineering construct on the basis of multipotent stromal adipose tissue cells and Osteomatrix for regeneration of the bone tissue. Bull Exp Biol Med. 2011;152(1):153–158. doi: 10.1007/s10517-011-1476-8 EDN: RHBVWV
- Vasilyev AV, Kuznetsova VS, Bukharova TB, et al. Osteoinductive potential of highly porous polylactide granules and Bio-Oss impregnated with low doses of BMP-2. IOP Conf Ser: Earth Environ. 2020;421(5):052035. doi: 10.1088/1755-1315/421/5/052035 EDN: JFZKWL
- Bukharova TB, Logovskaya LV, Volkov AV, et al. Adenoviral transduction of multipotent mesenchymal stromal cells from human adipose tissue with bone morphogenetic protein BMP-2 gene. Bull Exp Biol Med. 2013;156(1):122–126. doi: 10.1007/s10517-013-2294-y EDN: QPLCTT
- Köllmer M, Buhrman JS, Zhang Y, Gemeinhart RA. Markers are shared between adipogenic and osteogenic differentiated mesenchymal stem cells. J Dev Biol Tissue Eng. 2013;5(2):18–25. doi: 10.5897/JDBTE2013.0065
- Kamimura K, Suda T, Zhang G, Liu D. Advances in gene delivery systems. Pharmaceut Med. 2011;25(5):293–306. doi: 10.2165/11594020-000000000-00000
- Jooss K, Chirmule N. Immunity to adenovirus and adeno-associated viral vectors: implications for gene therapy. Gene Ther. 2003;10(11):955–963. doi: 10.1038/sj.gt.3302037
- Hoeben RC, Uil TG. Adenovirus DNA replication. Cold Spring Harb Perspect Biol. 2013;5(3):a013003. doi: 10.1101/cshperspect.a013003
- Phillips JE, Gersbach CA, García AJ. Virus-based gene therapy strategies for bone regeneration. Biomaterials. 2007;28(2):211–229. doi: 10.1016/j.biomaterials.2006.07.032 EDN: MCMEXB
- Zhu Y, Li D, Zhang K, et al. Novel synthesized nanofibrous scaffold efficiently delivered hBMP-2 encoded in adenoviral vector to promote bone regeneration. J Biomed Nanotechnol. 2017;13(4):437–446. doi: 10.1166/jbn.2017.2361
- Zhao Z, Zhao Q, Gu B, et al. Minimally invasive implantation and decreased inflammation reduce osteoinduction of biomaterial. Theranostics. 2020;10(8):3533–3545. doi: 10.7150/thno.39507 EDN: UOBQLD
- Yang D, Xiao J, Wang B, et al. The immune reaction and degradation fate of scaffold in cartilage/bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;104:109927. doi: 10.1016/j.msec.2019.109927 EDN: SSCZSV
- Wang Y, Bruggeman KF, Franks S, et al. Is viral vector gene delivery more effective using biomaterials? Adv Healthc Mater. 2021;10(1):e2001238. doi: 10.1002/adhm.202001238 EDN: DPMJUN
- Baghersad S, Bolandi B, Imani R, et al. An overview of PRP-delivering scaffolds for bone and cartilage tissue engineering. J Bionic Eng. 2024;21:674–693; doi: 10.1007/s42235-023-00471-6 EDN: QXTJLM
- Välimäki VV, Yrjans JJ, Vuorio E, Aro HT. Combined effect of BMP-2 gene transfer and bioactive glass microspheres on enhancement of new bone formation. J Biomed Mater Res A. 2005;75(3):501–509. doi: 10.1002/jbm.a.30236
Supplementary files

