Functional Features and Radiation Protection Methods for a Spacecraft with a Nuclear Power Plant in the Gas-Dust Plasma Environment of its Own External Atmosphere


Cite item

Full Text

Abstract

The operation of spacecraft with nuclear power plants operating under the influence of their own external atmosphere is associated with the effect of radiation transfer from the near-reactor zone to the area near the instrument compartment. This phenomenon is called “induced radiation”. Induced radiation has a negative effect on the equipment in the area near the instrument compartment. To protect against induced radiation, this article suggests, together with traditional protection methods, using special devices that provide additional radiation protection for spacecraft with nuclear power plants. These include: a positively charged separation screen; gas nozzles for purging the outboard space; electronic plasma neutralizers with thermionic cathodes. The combined use of traditional methods and additional protection devices to reduce the negative impact of a nuclear reactor will significantly extend the service life of the spacecraft.

About the authors

Aleksander N. Ustinov

Arsenal Machine Building Plant

Email: Ustinov@mzarsenal.com
SPIN-code: 8349-1200
Candidate of Technical Sciences, General Director 1-3 Komsomol St, 195009, Saint Petersburg, Russian Federation

Vladimir D. Atamasov

Baltic State Technical University “VOENMEH” named after D.F. Ustinov

Author for correspondence.
Email: vldmatamasov@mail.ru
Doctor of Technical Sciences, Professor of the A3 Department “Spacecraft and Engines” 1 1-st Krasnoarmeiskaya St, Saint-Petersburg, 190005, Russian Federation

References

  1. Atamasov VD, Babuk VA, Kovalev AP, Ustinov AN, et al. Theoretical foundations, features of designs and tests of space-based nuclear power plants. St. Petersburg : FSUE KB Arsenal named after M.V. Frunze, Baltic State Technical University. D.F. Ustinov Voenmekh Univ., St. Petersburg Branch of the K.E. Tsiolkovsky Academy of Cosmonautics of the Russian Federation, 2016. (In Russ.)
  2. Novikov LS. High-speed collisions in space. Moscow: UNC DO Publ.; 2003. (In Russ.) ISBN 5-88800-226-7 EDN: QNQZDL
  3. Poletaev BI, Romanov AV, Sokolov Yu, Ustinov AN, Milkovsky AG, Atamasov VD, Babuka VA. et at. Nuclear orbital complexes. V.D. Atamasov (ed.). St. Petersburg : FSUE “KB Arsenal named after M.V. Frunze”, Baltic State Technical University. D.F. Ustinov Voenmekh Univ., St. Petersburg Branch of the K.E. Tsiolkovsky Academy of Cosmonautics of the Russian Federation; 2016. (In Russ.)
  4. Kurchatov I.V. Selected works in three volumes. Vol. 2. Neutron Physics. Academician A.P. Alexandrova (ed.). Moscow: Nauka Publ.; 1982. (In Russ.)
  5. Atamasov VD, Poletaev BI. Cosmonautics of the XXI century and nuclear thermal emission power plants. A.P. Kovalev, V.F. Fateev (eds.). St. Petersburg: RDK — print Agency Publ.; 2002. (In Russ.)
  6. Physics of outer space. Materials of theoretical and experimental research carried out at the D.V. Skobeltsyn Scientific Research Institute of Nuclear Physics. URL: http://sovet.cosmos.ru/sites/default/files/cospar_r6.pdf (accessed: 06.15.2023).
  7. Akishin AI. The operability of space equipment under the influence of the spacecraft’s own external atmosphere. D.V. Skobeltsin Scientific Research Institute of Nuclear Physics. 2007. P. 15–19. (In Russ.) Available from: http://nuclphys.sinp.msu.ru/school/s07/s07_03.pdf (accessed: 15.06.2023).
  8. Haffner J. Nuclear radiation in space. Moscow: Atomizdat Publ.; 1971. (In Russ.)
  9. Krymsky GF, Petukhov SI, Starodubtsev SA. Studies of the theory of cosmic plasma. Science and tech-nology in Yakutia. 2022;1(42):8–14. (In Russ.) http://doi.org/10.24412/1728-516X-2022-1-8-14 EDN: JXFOVY
  10. Ryzhov YuA, Burgasov MP, Kuzovkin KN, Svirshchevsky SB. On methods for calculating the parameters of the own external atmosphere of aircraft. In the collection Aerothermogasodynamics in rarefied flows. Moscow: MAI Publ.; 1988. p. 3–24. (In Russ.)
  11. Korsun AG, Tverdokhlebova EM, Gabdullin FF. Dynamics of artificial plasma formations in space. There is a space model in the sat. Vol. II. The impact of the space environment on spacecraft materials and equipment. L.S. Novikova (ed.). Moscow: University Book House (KDU); 2007. p. 918–945. (In Russ.)
  12. Braginsky SI. Phenomena of transfer in plasma. Questions of plasma theory: collection of scientific articles. Moscow: Gosatomizdat Publ.; 1963. (In Russ.)
  13. Nadiradze AB, Korsun AG, Kurshakov MYu, Shaposhnikov VV, Gabdullin FF, Tverdokhlebova EM. Formation of the spacecraft’s own external ionosphere and its effects. Proceedings of MAI. 2011;(43):19. (In Russ.) EDN: NEBZGF
  14. Atamasov VD, Dementiev II, Ustinov AN. Space craft nuclear power unit. Patent 293434, Russian Federation, IPC B64G 1/42 (2006.01), B64G 1/54. EDN: ZKZPDU
  15. Atamasov VD, Dementiev II, Ustinov AN. Nuclear power plant of spacecraft. Patent 2677420, Russian Federation, IPC B64G 1/42 (2006.01), B64G 1/54. EDN: RWFLZU
  16. Kolbasin IV. Main sources and radiation composition affecting eigen external atmosphere of a spacecraft with nuclear power plant. Aerospace MAI journal. 2020;27(2):123–130. (In Russ.) http://doi.org/10.34759/vst-2020-2-123–130 EDN: JGQGJV
  17. Milkovsky AG, Atamasov VD, Kolbasin IV, Ustinov AN, Kalinina AM. New phenomena in the space experiment on the creation of an artificial solar eclipse during the joint flight of the Apollo — Soyuz spacecraft. Aerospace MAI journal. 2019;26(3):144–151. (In Russ.) EDN: YRLZKI
  18. Ground-based experiments and theoretical studies. Physics of outer space: Materials of theoretical and experimental studies carried out at the D.V. Skobeltsyn Scientific Research Institute of Nuclear Physics. (In Russ.) Available from: http://sovet.cosmos.ru/sites/default/files/cospar_r6.pdf (accessed: 12.02.2025).
  19. Mikheev MA, Mikheeva IM. Fundamentals of heat transfer. Moscow: Energiya Publ.; 1977. (In Russ.) Available from: https://djvu.online/file/IChEYFXlLZRmp (accessed: 12.02.2025).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).