Formulation of Satellite-UAVs Integration System for Earth Remote Sensing in the Republic of the Union of Myanmar


Cite item

Full Text

Abstract

The article develops the concept of a Hybrid Earth Remote Sensing System (HERS) for Myanmar, integrating Low-Earth Orbit (LEO) satellites and Unmanned Aerial Vehicles (UAVs) to obtain near real-time, high-resolution geospatial data for environmental monitoring and disaster risk management tasks. Analysis of the existing Earth remote sensing infrastructure and implemented projects revealed several limitations: high latency of satellite systems, cloud-cover interference, restricted data availability, and institutional barriers, including weak interagency coordination, a shortage of trained personnel, and insufficient funding. As a result of the study, the HERS architecture is formulated, including integration of satellites and UAVs, the use of multifrequency and laser communication channels, and energy-efficient UAVs with modular payloads (SAR, hyperspectral, and infrared sensors), providing compatible processing and rapid data transmission to the national GIS infrastructure. It is shown that the proposed system improves the spatiotemporal resolution of observations, reduces the impact of cloud cover, lowers operational costs compared with predominantly satellite-based solutions, and expands the range of practical tasks; from monitoring agriculture, forests, and water resources to near real-time response to floods and cyclones. The practical significance of the work lies in the fact that implementation of HERS, together with the development of a national GIS platform and specialist training programs, increases Myanmar’s resilience to natural and anthropogenic threats and provides more evidence-based support for decision-making.

About the authors

Alexandr V. Starkov

Moscow Aviation Institute (National Research University)

Author for correspondence.
Email: starkov@goldstar.ru
ORCID iD: 0000-0002-2332-904X
SPIN-code: 5242-3413

Doctor of Technical Sciences, Professor of the Department of System Analysis and Control

4 Volokolamskoe highway, Moscow, 125993, Russian Federation

Mar Lwin Zin

Mandalay Technological University

Email: drzinmar80@gmail.com
ORCID iD: 0009-0008-5824-2578

PhD (Technical Sciences), Professor of the Department of Remote Sensing

Aung Chan Thar Quarter, Patheingyi Township, Mandalay Division Mandalay, Myanmar

Oleg E. Samusenko

RUDN University

Email: samusenko@pfur.ru
ORCID iD: 0000-0002-8350-9384
SPIN-code: 6613-5152

PhD (Technical Sciences), Head of the Department of Innovation Management in Industries, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Myo Thant Aung

Moscow Aviation Institute (National Research University)

Email: aungmyothant4696@gmail.com
ORCID iD: 0009-0000-1159-3292

PhD (Technical Sciences), Doctoral student of the Department of Systems Analysis and Control

4 Volokolamskoe highway, Moscow, 125993, Russian Federation

Htet Linn Nay

Moscow Aviation Institute (National Research University)

Email: nayhtetlinn3014@gmail.com
ORCID iD: 0009-0009-1082-957X

Graduate student of the Department of Systems Analysis and Control

4 Volokolamskoe highway, Moscow, 125993, Russian Federation

References

  1. Renner SC, Rappole JH, Leimgruber P, Kelly DS, Shwe NM, Aung T, Aung M. Land cover in the northern forest complex of Myanmar: new insights for conservation. Oryx. 2007;41(1):27-37. https://doi.org/10.1017/S0030605307001603
  2. Mu Q, Zhao M, Running SW. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment. 2011;115(8):1781-1800. https://doi.org/10.1016/j.rse.2011.02.019
  3. Kurosu T, Fujita M, Chiba K. Monitoring of rice crop growth from space using ERS-1 C-band SAR. IEEE Transactions on Geoscience and Remote Sensing. 1995;33:1092-1096. https://doi.org/10.1109/36.406698
  4. Bryant RL. The Political Ecology of Forestry in Burma, 1824-1994. London: University of Hawai'i Press, 1997. ISBN 10 0824819098
  5. Saw AA. Deforestation and Local Livelihood Strategy: A Case of Encroachment into the Wunbaik Reserved Mangrove Forest, Myanmar. Ph.D. Thesis. Kyoto, Japan: Kyoto University; 2017.
  6. Htun NZ, Mizoue N, Kajisa T, Yoshida S. Deforestation and forest degradation as measures of Popa Mountain Park (Myanmar) effectiveness. Environmental Conservation. 2009;36(03):218-224. https://doi.org/10.1017/S0376892909990415
  7. Stibig H-J, Beuchle R. Forest Cover Map of Continental Southeast Asia at 1:4,000,000: Derived from SPOT4-VEGETATION Satellite Images. TREES Publications Series D: Thematic outputs No. 4. Luxembourg: Publications Office of the European Union; 2003.
  8. Win S, Myint MM. Mineral potential of Myanmar. Resource Geology.2008;48(3):209-218. https://doi.org/10.1111/j.1751-3928.1998.tb00018.x
  9. Webb EL, Jachowski NRA, Phelps J, Friess DA, Than MM, Ziegler AD. Deforestation in the Ayeyarwady Delta and the conservation implications of an internationally-engaged Myanmar. Global Environmental Change. 2014;24(1):321-333. https://doi.org/10.1016/j.gloenvcha.2013.10.007
  10. Tangdamrongsub N, Ditmar PG, Steele-Dunne SC, Gunter BC, Sutanudjaja EH. Assessing total water storage and identifying flood events over Tonlé Sap basin in Cambodia using GRACE and MODIS satellite observations combined with hydrological models. Remote Sensing of Environment. 2016;181:162-173. https://doi.org/10.1016/j.rse.2016.03.030
  11. Alavipanah SK, Matinfar HR, Rafiei Emam A, Khodaei K, Hadji Bagheri R, Yazdan Panah A. Criteria of selecting satellite data for studying land resources. Desert. 2010;15:83-102. https://doi.org/10.22059/jdesert.2011.23005
  12. Belgiu M, Stein A. Spatiotemporal image fusion in remote sensing. Remote Sensing. 2019;11:818. https://doi.org/10.3390/rs11070818
  13. Candido AKAA, Filho ACP, Haupenthal MR, da Silva NM, de Sousa Correa J, Ribeiro ML. Water quality and chlorophyll measurement through vegetation indices generated from orbital and suborbital images. Water Air & Soil Pollution. 2016;227:224. https://doi.org/10.1007/s11270-016-2919-7
  14. Padro JC, Munoz FJ, Avila LA, Pesquer L, Pons X. Radiometric correction of Landsat-8 and Sentinel-2A scenes using drone imagery in synergy with field spectroradiometry. Remote Sensing. 2018;10:1687. https://doi.org/10.3390/rs10111687
  15. Stow D, Nichol CJ, Wade T, Assmann JJ, Simpson G, Helfter C. Illumination geometry and flying height influence surface reflectance and NDVI derived from multispectral UAS imagery. Drones. 2019;3:55. https://doi.org/10.3390/drones3030055
  16. Chen Y, Feng W, Zheng G. Optimum placement of UAV as relays. IEEE Communications Letters. 2018;22(2):248-251. https://doi.org/10.1109/LCOMM.2017.2776215
  17. Lin AY, Novo A, Har-Noy S, Ricklin ND, Stamatiou K. Combining GeoEye-1 satellite remote sensing, UAV aerial imaging, and geophysical surveys in anomaly detection applied to archaeology. IEEE Journal of selected Topics Applied Earth Observations and Remote Sensing. 2011;4:870-876. https://doi.org/10.1109/JSTARS.2011.2143696
  18. Zeng Y, Zhang R, Lim TJ. Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Communications Magazine. 2016;54(5):36-42. https://doi.org/10.48550/arXiv.1602.03602
  19. Müllerova J, Brůna J, Dvorak P, Bartalos T, Vítkova M. Does the data resolution/origin matter? Satellite, airborne and UAV imagery to tackle plant invasions. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XXIII ISPRS Congress, 12-19 July 2016, Prague, Czech Republic, 2016; XLI-B7:903-908. https://doi.org/10.5194/isprsarchives-XLI-B7-903-2016
  20. Alvarez-Vanhard E, Houet T, Mony C, Lecoq L, Corpetti T. Can UAVs fill the gap between in situ surveys and satellites for habitat mapping? Remote Sensing Environment. 2020;243:111780. https://doi.org/10.1016/j.rse.2020.111780
  21. Li X, Feng W, Chen Y, Wang C-X, Ge N. Maritime coverage enhancement using UAVs coordinated with hybrid satellite-terrestrial networks. IEEE Transactions on Communications. 2020;68(4):2355-2369. https://doi.org/10.48550/arXiv.1904.02602
  22. Zhao Y, Chen N, Chen J, Hu C. Automatic extraction of yardangs using Landsat 8 and UAV images: A case study in the Qaidam Basin, China. Aeolian Research. 2018;33:53-61. https://doi.org/10.1016/j.aeolia.2018.05.002
  23. Liu P, Di L, Du Q, Wang L. Remote sensing big data: theory, methods and applications. Remote Sensing. 2018;10:711. https://doi.org/10.3390/rs10050711
  24. Liu H, Dahlgren RA, Larsen RE, Devine SM, Roche LM, O’ Geen AT, Wong AJY, Covello S, Jin Y. Estimating rangeland forage production using remote sensing data from a small unmanned aerial system (sUAS) and PlanetScope satellite. Remote Sensing. 2019;11:595. https://doi.org/10.3390/rs11050595

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).