Optimizing Space Robot Configurations to Minimize Capture Contact Forces


Cite item

Full Text

Abstract

Space robotics is rapidly becoming essential as satellites and orbital debris continue to increase, creating demand for reliable capture and servicing technologies. A central challenge lies in minimizing the impact forces generated during contact, which can threaten both the robot and the target. This paper addresses the problem by introducing a configuration optimization approach that leverages the concept of integrated effective mass (IEM) to reduce capture contact forces. The contribution of this study is twofold: it demonstrates how IEM serves as a practical performance metric for predicting capture safety, and it validates configuration optimization as an effective strategy for mitigating impact forces in free-floating space robots. The methodology applied a Hunt - Crossley contact model with hysteresis damping to simulate robot-target interactions under various manipulator configurations. A 7-DOF free-floating robot was modeled, and IEM was computed through Jacobian-based dynamic analysis. The coefficient of restitution was also tuned to balance rebound and capture stability. Results reveal a strong nonlinear relationship between IEM and contact force. Configurations with low IEM generated substantially lower forces: for example, an IEM of 0.0413 kg produced only 442 N, while an IEM of 1.7199 kg resulted in forces exceeding 4142 N. By tuning the restitution coefficient to approximately 0.8, rebound effects were minimized without compromising stability. The simulations confirmed that configuration optimization can reduce capture forces by nearly an order of magnitude while avoiding singularities. In conclusion, this work shows that planning manipulator configurations based on IEM analysis is not merely theoretical but a practical tool for safer, more reliable on-orbit servicing and debris removal. These findings reinforce configuration optimization as a cornerstone for the next generation of space robotic operations.

About the authors

Yeshurun A. Adde

Addis Ababa University

Author for correspondence.
Email: kibret10@gmail.com
ORCID iD: 0000-0001-5137-0667

Doctor of Philosophy (Physics), PhD Scholar, School of Mechanical & Industrial Engineering, College of Technology & Built Environment-AAiT

Addis Ababa, Ethiopia

Yury N. Razoumny

RUDN University

Email: yury.razoumny@gmail.com
ORCID iD: 0000-0003-1337-5672
SPIN-code: 7704-4720

Doctor of Sciences (Techn.), Director of the Academy of Engineering, Head of the Department of Mechanics and Control Processes, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Araya Abera Betelie

Addis Ababa University

Email: arsame2008@gmail.com
ORCID iD: 0009-0008-8761-5644

Doctor of Philosophy (Mech.), Assistant Professor, School of Mechanical & Industrial Engineering, College of Technology & Built Environment-AAiT

Addis Ababa, Ethiopia

Biruk Degefu

Addis Ababa University

Email: birukdegefu16@gmail.com
ORCID iD: 0009-0009-2368-7371

Bachelor of Science (Mech.), MSc Student, School of Mechanical & Industrial Engineering, College of Technology & Built Environment-AAiT

Addis Ababa, Ethiopia

References

  1. Nomura K, Rella S, Merritt H, Baltussen M, Bird D, Tjuka A, and Falk D. Tipping points of space debris in low earth orbit. International Journal of the Commons. 2024;18(1):17-31. https://doi.org/10.5334/ijc.1275 EDN: GKQPVS
  2. Iacomino C, Rossi A, Saputo A. Earth’s Orbits at Risk: The Economics of Space Sustainability. Paris: OECD Publ.; 2022. https://doi.org/10.1787/16543990-en
  3. Alizadeh M, Zhu ZH. A comprehensive survey of space robotic manipulators for on-orbit servicing. Frontiers in Robotics and AI. 2014;11:1470950. https://doi.org/10.3389/frobt.2024.1470950
  4. Opromolla R, Grishko D, Auburn J, Bevilacqua R, Buinhas L, Cas-sady J, J¨ager M, Jankovic M, Rodriguez J, Perino MA, Bastida-Virgili B. Future in-orbit servicing operations in the space traffic management context. Acta Astronautica. 2024;220:469-477. https://doi.org/10.1016/j.actaastro.2024.05.007 EDN: NRCHSI
  5. Dou Bo, Yue X. Fractional-order sliding mode control for free-floating space manipulator with disturbance and input saturation. International Journal of Robust and Nonlinear Control. 2025;35(8):3094-3115. https://doi.org/10.1002/rnc.7826 EDN: PSHHGT
  6. Zhang O, Liu Z, Shao X, Yao W, Wu L, and Liu J. Learning-based task space trajectory planning frame-work with pre-planning and post-processing for uncertain free-floating space robots. IEEE Transactions on Aerospace and Electronic Systems. 2025;61(3):6325-6338. https://doi.org/10.1109/TAES.2025.3527428
  7. Hunt KH, and Crossley FRE. Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 1975;42(2):440-445. https://doi.org/10.1115/1.3423596
  8. Lankarani HM, Nikravesh PE. A contact force model with hysteresis damping for impact analysis of multibody systems. Journal of Mechanical Design. 1990;112(3):369-376. https://doi.org/10.1115/1.2912617
  9. Lee TW, Wang A. On the dynamics of intermittent-motion mechanisms. Part 1: dynamic model and response. Journal of Mechanisms, Transmissions, and Automation in Design. 1983;105(3):534-540.
  10. Flores P, Lankarani HM. Contact Force Models for Multibody Dy-Namics. Springer Publ.; 2016. https://|doi.org/10.1007/978-3-319-30897-5
  11. Gonthier Y, McPhee J, Lange Ch, Piedboeuf JC. A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody System Dynamics. 2004;11(3):209-233. EDN: FLISJJ
  12. Hu S, Guo X. A dissipative contact force model for impact analysis in multibody dynamics. Multibody System Dynamics. 2015;35(2):131-151. https://doi.org/10.1007/s11044-015-9453-z EDN: SJEOGG
  13. Chihi M, Ben Hassine C, and Q. Hu Q. Segmented hybrid impedance control for hyper-redundant space manipulators. Applied Sciences. 2025;15(3):1133. https://doi.org/10.3390/app15031133 EDN: SUBEAM
  14. Xiang R, Xu H, Li X, Zhu X, Meng D, and Xu W. Compliance control of a cable-driven space manipulator based on force-position hybrid drive mode. Aerospace. 2025;12(1):69. https://doi.org/10.3390/aerospace12010069 EDN: GHBQGQ
  15. Zalewski K, Zakrevsky A, Virtanen M, Svensson J, Joe A, Wilson J. Deep neural network enhanced modeling and adaptive control of a malfunctional spacecraft under unknown accessory breakage. Mechanical Engineering Advances. 2025;3(1):2469-2469. https://doi.org/10.59400/mea2469
  16. Yang Z, Yang B, Ji R, Wang T, and Ma J. z-Ary compression event-triggered control for spacecraft with adhesive-resilient prescribed performance. Mathematics. 2025;13(3):386. https://doi.org/10.3390/math13030386
  17. Hu H, Wen S, J. Yu J. Prescribed time control of position and force tracking for dualarm robots with output error constraints. Scientific Reports. 2025;15(1):3170. https://doi.org/10.1038/s41598-025-86783-5 EDN: OLVGCR
  18. Junkang Y, Wei J, Chuang G, Dehua Z, Wei C, and Hongjun L. Trajectory optimization method of terminal self-reconfiguring live working robot based on fourier series. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2025;239(9):3360-3378. https://doi.org/10.1177/09544062241304876 EDN: STBNLB
  19. Becker M, Caspers P, Lilge T, Haddadin S, and Müller MA. Informed circular fields: a global reactive obstacle avoidance framework for robotic manipulators. Frontiers in Robotics and AI. 2025;11:1447351. https://doi.org/10.3389/frobt.2024.1447351
  20. Liu X, Xu Y, Wang T, Zeng Z, Zhou Z, and Zhai Y. An adaptive search strategy combination algorithm based on reinforcement learning and neighborhood search. Journal of Computational Design and Engineering. 2025;12(2):177-217. https://doi.org/10.1093/jcde/qwaf014 EDN: KQGMLH
  21. Yang X, Wang J. A novel reinforcement learning algorithm-based control strategy for grid-configured inverters. Energies. 2025;18(3):597. https://doi.org/10.3390/en18030597 EDN: VTWPQY
  22. You H, Ye Y, Zhou T, Du J. Force-based robotic imitation learning: A two-phase approach for construction assembly tasks. arXiv preprint arXiv:2501.14942. 2025. https://doi.org/10.48550/arXiv.2501.14942
  23. Wu J, Ai X, Xu Z, Zhu Y, Wu Q. Rapid micro-motion feature extraction of multiple space targets based on improved IRT. Remote Sensing. 2025;17(3):434. https://doi.org/10.3390/rs17030434 EDN: HJXDWT
  24. Du X, Meng Z, Wang Y, Li Y, Ma Z, He L, Lu W, Chen J, Wu C, Karkee M. Multistage synchronous telescopic manipulator with end-effector - biased rotating-pulling mode for damage-free robotic picking. Journalof Field Robotics. 2025;42(5):2297-2317. https://doi.org/10.1002/rob.22521 EDN: GBNOPC
  25. Li C, Xing H, Qin P. Robotic arm trajectory planning based on improved slime mould algorithm. Machines. 2025;13(2):79. https://doi.org/10.3390/machines 13020079 EDN: NQSDUP
  26. Shen K. Researchch on multi-objective trajectory planning for industrial robots based on machine learning. Journal of Computer, Signal, and System Research. 2025;2(1):28-37. https://doi.org/10.71222/2jcjjz62
  27. Chen T, Cao Y, Xie M, Ni S, Zhai E, Wei Z. Distributed passivity-based control for multiple space ma-nipulators holding flexible beams. Actuators. 2025;14:20. https://doi.org/10.3390/act14010020 EDN: XHGMNS
  28. Yao H, Liang L, Ma W, Zhang H, Zhao Y, Cui H. An enhanced continuous contact force model for deploy-able structures with clearance joints: Validation, simulation, and dynamic characteristics. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2025;239(1):19-37.
  29. Yin S, Shi Z, Liu Y, Xue G, and You H. Adaptive non-singular terminal sliding mode trajectory tracking control of robotic manipulators based on disturbance observer under unknown time-varying disturbance. Processes. 2025;13(1):266. https://doi.org/10.3390/pr13010266 EDN: ROSATA
  30. Calzada-Garcia A, Victores JG, Naranjo-Campos RJ, and Balaguer C. A review on inverse kinematics, control and planning for robotic manipulators with and without obstacles via deep neural networks. Algorithms. 2025;18(1):23. https://doi.org/10.3390/a18010023 EDN: DBCSCH
  31. Gilardi G, Sharf I. Literature survey of contact dynamics modeling. Mechanism and machine theory. 2002;37(10):1213-1239. https://doi.org/10.1016/S0094-114X(02)00045-9
  32. Machado M, Moreira P, Flores P, Lankarani HM. Compliant contact force models in multibody dynamics: Evolution of the hertz contact theory. Mechanism and machine theory. 2012;53:99-121, 2012. https://doi.org/10.1016/j.mechmachtheory.2012.02.010 EDN: PNFNVH
  33. Yu J, Chu J, Li Y, Guan L. An improved compliant contact force model using a piecewise function for impact analysis in multibody dynamics. Proceedings of the Institution of Mechanical Engineers, Part a Journal of Multi-body Dynamics. 2020;234(2):424-432, 2020. https://doi.org/10.1177/1464419319900874 EDN: FQCZVT
  34. Wang X, Chen Z. Adaptive sliding mode control for dual-arm space robots post-capturing spinning targets. Advances in Space Research. 2025. https://doi.org/10.1016/j.asr.2025.07.050
  35. Liu D, Ai H, Chen L. Impedance control of space robot on-orbit insertion and extraction based on prescribed performance method. Applied Sciences. 2022;12(10):5147. https://doi.org/10.3390/app12105147 EDN: MWXIWT
  36. Fujiki T, Tahara K. Series admittance - impedance controller for more robust and stable extension of force control. ROBOMECH Journal. 2022;9(1):23.
  37. Zhang Z, Li X, Wang X, Zhou X, An J, Li Y. TDE-based adaptive integral sliding mode control of space manipulator for space-debris active removal. Aerospace. 2022;9(2):105. https://doi.org/10.3390/aerospace9020105 EDN: DLIJXB
  38. Ye D, Yang C, Jiang Y, Zhang H. Hybrid impe-dance and admittance control for optimal robot - environ-ment interaction. Robotica. 2024;42(2):510-535. https://doi.org/10.1017/s0263574723001601 EDN: RGJLAR
  39. Formenti A, Bucca G, Shahid AA, Piga D, Roveda L. Improved impedance/admittance switching controller for the interaction with a variable stiffness environment. Complex Engineering Systems. 2022;2(3):1-18. https://doi.org/10.20517/ces.2022.16 EDN: OWKMMZ
  40. Xie Z, Sun T, Kwan T, Wu X. Motion control of a space manipulator using fuzzy sliding mode control with reinforcement learning. Acta Astronautica. 2020;176:156-172. https://doi.org/10.1016/j.actaastro.2020.06.028
  41. Bacher D, Cooper JR, Puig Navarro J. Trajectory generation with load constraints for robotic manipulators. ASCEND. 2023. Available from: https://ntrs.nasa.gov/api/citations/20230013437/downloads/main.pdf (accessed: 12.05.2024)
  42. MacPherson R, Hockman B, Bylard A, Estrada MA, Cutkosky MR, Pavone M. Trajectory optimization for dynamic grasping in space using adhesive grippers. In Field and Service Robotics: Results of the 11th International Conference. Springer Publ.; 2017. P. 49-64. https://doi.org/10.1007/978-3-319-67361-5_4
  43. Dai G, Zhang Q, Xu B. A novel framework for trajectory planning in robotic arm developed by integrating dynamical movement primitives with particle swarm optimization. Scientific Reports. 2025;15(1):29656. https://doi.org/10.1038/s41598-025-14801-7
  44. Zheng L, Yu W, Li G, Qin G, Luo Y. Particle swarm algorithm path-planning method for mobile robots based on artificial potential fields. Sensors. 2023;23(13):6082. https://doi.org/10.3390/s23136082 EDN: EERPIC
  45. Zhang M, Geng X, Bruc J, Caluwaerts K, Vespignani M, Sun-Spiral V, Abbeel P, and Levine P. Deep reinforcement learning for tensegrity robot locomotion. In 2017 IEEE international conference on robotics and automation (ICRA). 2017. P. 634-641.
  46. Zhang L. Configuration optimization for free-floating space robot capturing tumbling target. Aerospace. 2022;9(2):69. https://doi.org/10.3390/aerospace9020069 EDN: IRFCJL
  47. Zhang L, Wang S. Risk assessment model-guided configuration optimization for free-floating space robot performing contact task. Machines. 2022;10(9):720. https://doi.org/10.3390/machines10090720 EDN: PPIMFI
  48. Zhiyuan Z, Xiaohang Y, Yuntao L, Zichun X, Jingdong Z, Hong L. Singularity analysis and avoidance for an ssrms-type recon-figurable space manipulator with a non-spherical wrist and two lockable passive telescopic links. Chinese Journal of Aeronautics. 2024;37(8):435-459. https://doi.org/10.1016/j.cja.2024.01.014
  49. Wang H, Zhou Z, Zhong X, Chen Q. Singular configuration analysis and singularity avoidance with application in an intelligent robotic manipulator. Sensors. 2022;22(3):1239. https://doi.org/10.3390/s22031239 EDN: RCJGRQ
  50. Li C, Zheng Z, Yuan J. A trajectory optimization method with frictional contacts for onorbit capture. Acta Astronautica. 2020;175:90-98. https://doi.org/10.1016/j.actaastro.2020.05.046 EDN: AATBNJ
  51. Wang J, Zhang T, Ma N, Li Z, Ma H, Meng F, Meng M Q.-H. A survey of learning-based robot motion planning. IET Cyber-Systems and Robotics. 2021;3(4):302-314. https://doi.org/10.1049/csy2.12020 EDN: FRPVMQ
  52. Noroozi F, Daneshmand M, Fiorini P. Conventional, heuristic and learning-based robot motion planning: Reviewing frameworks of current practical sig-nificance. Machines. 2023;11(7):722. https://doi.org/10.3390/machines11070722 EDN: GJDEHC
  53. Dadiotis I. Optimization and learning-based planning and control for quadrupedal manipulators. Thesis submitted for the degree of: Doctor of Philosophy (37th cycle). University of Genoa, Italyy, 2025.
  54. Zhang L. Configuration optimization for free-floating space robot capturing tumbling target. MDPI Aerospace. 2022;9(2):69-86. https://doi.org/10.3390/aerospace9020069 EDN: IRFCJL
  55. Skrinjar L, Slaviˇc J, Bolteˇzar M. A review of continuous contact-force models in multibody dynamics. International Journal of Mechanical Sciences. 2018;145:171-187. https://doi.org/10.1016/j.ijmecsci.2018.07.010 EDN: MEYUJF
  56. Hunt KH, Crossley F R E. Coefficient of restitution interpreted as damping in vibroimpact. Journal of Applied Mechanics, Transactions of the ASME. 1975;42(2):440-445. https://doi.org/10.1115/1.3423596
  57. Lankarani HM, Nikravesh PE. A contact force model with hysteresis damping for impact analysis of multibody systems. Journal of Mechanical Design, Transactions of the ASME. September 1990;112(3):369-376. https://doi.org/10.1115/1.2912617
  58. Zhang J, Li W, Zhao L, He G. A continuous contact force model for impact analysis in multibody dynamics. Mechanism and Machine Theory. 2020;153:103946. https://doi.org/10.1016/j.mechmachtheory.2020.103946 EDN: TUURRG
  59. Tommasino D, Cipriani G, Doria A, Rosati G. Effect of end-effector compliance on collisions in robotic teleoperation. Applied Science. 2020;10(24):9077. https://doi.org/10.3390/app10249077 EDN: TUNTNH
  60. Sharkawy A. An investigation on the effective mass of the robot: Dependence on the end-effector position. Engineering Transactions. 2021;69(3):293-313. https://doi.org/10.24423/EngTrans.1329.20210826
  61. Kirschner RJ, Mansfeld N, G´omez Pe˜na G, Abdolshah S, and Haddadin S. Notion on the correct use of the robot effective mass in the safety context and comments on iso/ts 15066. In 2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR). Munich, Germany, 2021. p. 6-9. https://doi.org/10.1109/ISR50024.2021.9419495
  62. Chimento J. Kinematic Calibration of a Seven Revolute Joints Serial Manipulator. PhD thesis, Politecnico di Torino, 2019. Available from: http://webthesis.biblio.polito.it/id/eprint/12467 (accessed: 12.05.2024)
  63. Doliwa S. Inverse kinematics of the kuka lbr iiwa r800 (7 dof). 2020. https://doi.org/10.5281/zenodo.4063575
  64. Zhang L, Guo S, Huang Y, Xiong X. Kinematic singularity analysis and simulation for 7dof kuka lbr iiwa r800 robot. International Journal of Mechatronics and Applied Mechanics. 2019;6(1):157-164.
  65. Calzolari D, Lampariello R, Giordano AM. Singularity Maps of Space Robots and their Application to Gradient-based Trajectory Planning. In Proceedings of Robotics: Science and Systems (RSS), Corvalis, Oregon, USA, July 12-16, 2020. https://doi.org/10.15607/RSS.2020.XVI.015
  66. Mueller A. Analytically informed inverse kinematics solution at singularities. 2024. https://doi.org/10.48550/arXiv.2412.20409
  67. Beck F, Vu MN, Hartl-Nesic C, A. Kugi A. Singu-larity avoidance with application to online trajectory optimization for serial manipulators. IFAC-PapersOnLine. January 2023;56(2):284-291. https://doi.org/10.1016/j.ifacol.2023.10.1582

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).