Comparison analysis of AIbased smartphone applications for selfexamination of skin cancer risk

Cover Page

Cite item

Full Text

Abstract

A comparative analysis of 3 AI-based smartphone applications for self-service skin cancer risk assessment: ProRodinki, Skinive and Skin Vision. Analysis consists of description of applications and its ways of work, and results, such as sensitivity and specificity, done on the base of the practical experiment conducted with processing 516 images of the skin neoplasms and pathologies confirmed by histological research via each app. Every application is unique and differs from each other by its principles or work, algorithms, user experience and design, and of course AI model and the set of input data that is analyzed by neural networks. Current research and practical experiment were made with focus on images processing and the app risk assessment for each of the image, other details and mole prescription information were set neutral. This leads to a conclusion that there is a lack of methodology for testing and analysis of different AI-based applications and services. Having such methodology, the comparison analysis results can be more objective and transparent.

About the authors

Stepan S. Korotkiy

RUDN University

Author for correspondence.
Email: skorotkiy@gmail.com
ORCID iD: 0009-0004-4613-970X

Graduate student, Department of Mechanics and Control Processes, Academy of Engineering

Moscow, Russian Federation

Olga A. Saltykova

RUDN University

Email: saltykova-oa@rudn.ru
ORCID iD: 0000-0002-3880-6662

Ph.D. of Physico-Mathematical Sciences, Associate Professor of the Department of Mechanics and Control Processes, Academy of Engineering

Moscow, Russian Federation

Andrey O. Ukharov

Moscow State Technical University n.a. Bauman

Email: oukharov@gmail.com
ORCID iD: 0000-0003-3490-3657

Ph.D. of Technical Sciences, Researcher

Moscow, Russian Federation

Irena L. Shlivko

Privolzhsky Research Medical University

Email: irshlivko@gmail.com
ORCID iD: 0000-0001-7253-7091

D. Sci. (Med.), Assoc. Prof.

Nizhny Novgorod, Russian Federation

Irina A. Klemenova

Privolzhsky Research Medical University

Email: iklemenova@mail.ru
ORCID iD: 0000-0003-1042-8425

D. Sci. (Med.), Prof.

Nizhny Novgorod, Russian Federation

Oxana E. Garanina

Privolzhsky Research Medical University

Email: oksanachekalkina@yandex.ru
ORCID iD: 0000-0002-7326-7553

Ph.D. of Medical Sciences, Assoc. Prof.

Nizhny Novgorod, Russian Federation

Kseniia A. Uskova

Privolzhsky Research Medical University

Email: k_balyasova@bk.ru
ORCID iD: 0000-0002-1000-9848

Assistant

Nizhny Novgorod, Russian Federation

Anna M. Myronycheva

Privolzhsky Research Medical University

Email: mironychevann@gmail.com
ORCID iD: 0000-0002-7535-3025

Assistant

Nizhny Novgorod, Russian Federation

Yana L. Stepanova

Privolzhsky Research Medical University

Email: stepanova.ya09@yandex.ru
ORCID iD: 0009-0004-9228-7770

Assistant

Nizhny Novgorod, Russian Federation

References

  1. Ukharov AO, Shlivko IL, Klemenova IA., Garanina OE, Uskova KA, Mironycheva AM, Stepanova YL. Skin cancer risk self-assessment using AI as a mass screening tool. Informatics in Medicine Unlocked. 2023; 38:101223. https://doi.org/10.1016/j.imu.2023.101223
  2. Fontanillas P, Alipanahi B, Furlotte NA, Johnson M, Wilson CY. 23andMe Research Team, Pitts SJ, Gentleman R, Auton A. Disease risk scores for skin cancers. Nat Commun. 2021 Jan8;12:160. https://doi.org/10.1038/s41467-020-20246-5
  3. Gupta AK, Bharadwaj M, Mehrotra R. Skin cancer concerns in people of color: risk factors and prevention. Asian Pacific journal of cancer prevention: APJCP. 2016 Dec;117 (12):5257-5264. https://doi.org/10.22034/APJCP.2016.17.12.5257
  4. Zhu S, Sun C, Zhang L, Du X, Tan X, Peng S. Incidence trends and survival prediction of malignant skin cancer: a SEER-based study. International Journal of General Medicine. 2022;15:2945-2956. https://doi.org/10.2147/IJGM.S340620
  5. Davis LE, Shalin SC, Tackett AJ. Current state of melanoma diagnosis and treatment. Cancer biology & therapy. 2019;20(11):1366-1379. https://doi.org/10.1080/ 15384047.2019.1640032
  6. Apalla Z, Nashan D, Weller RB, Castellsagué X. Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol Ther (Heidelb). 2017;7(Suppl 1):5-19. https://doi.org/10.1007/s13555-016-0165-y
  7. Blum A, Bosch S, Haenssle HA, Fink C, Hofmann-Wellenhof R, Zalaudek I, Kittler H, Tschandl P. Künstliche Intelligenz und Smartphone-ProgrammApplikationen (Apps). Hautarzt. 2020;71:691-698. https://doi.org/10.1007/s00105-020-04658-4
  8. Chao E, Meenan CK, Ferris LK. SmartphoneBased Applications for Skin Monitoring and Melanoma Detection. Dermatol Clinics. 2017 Oct;35(4):551-557. https://doi.org/10.1016/j.det.2017.06.014
  9. Freeman K, Dinnes J, Chuchu N, Takwoingi Y, Bayliss SE, Matin RN, Jain A, Walter FM, Williams HC, Deeks JJ. Algorithm based smartphone apps to assess risk of skin cancer in adults: systematic review of diagnostic accuracy studies. BMJ. 2020;368:m127. https://doi.org/10.1136/bmj.m127
  10. Ngoo A, Finnane A, McMeniman E, Tan JM, Janda M, Soyer HP. Efficacy of smartphone applications in high-risk pigmented lesions. Australasian Journal of Dermatology. 2018;59(3):e175-e182. https://doi.org/10.1111/ajd.12599
  11. Flaten HK, St Claire C, Schlager E, Dunnick CA, Dellavalle RP. Growth of mobile applications in dermatology-2017 update. Dermatology online journal. 2018; 24(2):1-4. https://doi.org/10.5070/D3242038180
  12. Gates B. The Age of AI has begun. March 21, 2023. URL: https://www.gatesnotes.com/The-Age-of-AI-Has-Begun (22.02.2023)
  13. Matin RN, Dinnes J. AI-based smartphone apps for risk assessment of skin cancer need more evaluation and better regulation. British Journal of Cancer. 2021; 124(11):1749-1750. https://doi.org/10.1038/s41416-021-01302-3
  14. Ćirković A. Evaluation of Four Artificial Intelligence-Assisted Self-Diagnosis Apps on Three Diagnoses: Two-Year Follow-Up Study. Journal of Medical Internet Research. 2020;22(12):e18097. https://doi.org/10.2196/18097
  15. Stehman SV. Selecting and interpreting measures of thematic classification accuracy. Remote sensing of Environment. 1997;62(1):77-89. https://doi.org/10.1016/S0034-4257(97)00083-7

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).