On the experimental setup for approbation of an algorithm for processing diagnostic parameters of aircraft gas turbine engine based on multilayer neural networks

Capa

Citar

Texto integral

Resumo

The paper presents experimentally substantiated tabular data for hyperparameter tuning of multilayer neural networks in aviation gas turbine engine diagnostics. The authors propose seven original algorithms for adaptive training parameter tuning, including methods for dynamic adaptation of the learning rate, strategies for changing the network architecture depending on the engine operating mode, and adaptive approaches to regularization. The parameter ranges cover values from 10–5 to 103, which ensures practical applicability for various architectures and data types. The scientific novelty lies in the creation of adaptive algorithms that take into account the specifics of the diagnostic parameters of gas turbine engine components and their time dynamics.

Sobre autores

H. Huseynov

Moscow State Technical University of Civil Aviation

Autor responsável pela correspondência
Email: khuseyn.21@gmail.com
ORCID ID: 0009-0002-9280-6361
Postgraduate student Moscow

O. Mashoshin

Moscow State Technical University of Civil Aviation

Email: o.mashoshin@mstuca.ru
ORCID ID: 0009-0004-8099-5198
Doctor of Technical Sciences, Professor Moscow

Bibliografia

  1. Pei X., Zheng X., Wu J. (2021). Rotating machinery fault diagnosis through a transformer convolution network subjected to transfer learning. IEEE Transactions on Instrumentation and Measurement. 70: 1-11.
  2. Sembiring J., Sasongko R. A., Bastian E. I., Raditya B. A., Limansubroto R. E. (2024). A deep learning approach for trajectory control of tilt-rotor UAV. Aerospace. 11(1): 96.
  3. Smith L. N. Cyclical learning rates for training neural networks. (2017). IEEE Winter Conference on Applications of Computer Vision. 464-472.
  4. Tahan M., Tsoutsanis E., Muhammad M., Karim Z. A. A. (2017). Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review. Applied Energy. 198: 122-144.
  5. Tsoutsanis E., Meskin N., Benammar M., Khorasani K. (2019). A review on gas turbine gas-path diagnostics: state-of-the-art methods, challenges and opportunities. Aerospace. 6(7): 83.
  6. Zhou D., Yao Q., Wu H., Ma S., Zhang H. (2020). Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks. Energy. 200. doi: 10.1016/j.energy.2020.117467.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).