Properties of Calcium Phosphate/Hydrogel Bone Grafting Composite on the Model of Diaphyseal Rat Femur’s Defect: Experimental Study

Cover Page

Cite item

Abstract

Background. The problem of bone defects replacement is relevant nowadays, that is why many scientists create new synthetic bone substitutes, but the «ideal» material has not been found so far.

The aims of the study: 1) to determine the suitability of the monocortical defect model in the rat femur diaphysis with additional prophylactic reinforcement with a bone plate for assessing the biological properties of implanted materials using the commercially available ChronOS® material as an example; 2) to assess of the osteoconductive properties of composite materials based on poly(ethylene glycol)diacrylate and octacalcium phosphate with architecture Kelvin and gyroid types on the developed model.

Methods. A prospective study, level of evidence II. A monocortical defect of the rat femoral diaphysis (length 7 mm) was produced under anaesthesia in aseptic conditions and fixed with a polyetheretherketone plate and six titanium screws. In the control group, the defect was left empty. In other groups, blocks of one of three materials were implanted — сhronOS and composites of poly(ethylene glycol)diacrylate and octacalcium phosphate with 3D-printed Kelvin and gyroid architectures. After 3 and 6 weeks, the rats were sacrificed, and histological examination of the defect zone was performed. The amount of newly formed bone tissue was histometricly assessed, followed by statistical processing of the results.

Results. All rats have reached the planned endpoint, and there were no infectious complications or loss of fixation. Histological examination of the defect zone revealed minimal bone growth in the Control group, rather slow bone formation in the Gyroid group, and statistically significantly more pronounced bone formation in the pores of the materials in the Kelvin and Chronos groups.

Conclusions. Bone defect in this model was not spontaneously filled with bone tissue and allowed us to study the biological properties of bone substitutes (the ability to biodegrade and osteoconductive properties). The osteoconductive properties of a composite material based on poly(ethylene glycol)diacrylate and octacalcium phosphate with a Kelvin architecture are higher than with a gyroid architecture and are comparable to that of the сhronOS.

About the authors

Ivan M. Shcherbakov

Lomonosov Moscow State University

Author for correspondence.
Email: imscherbackov@yandex.ru
ORCID iD: 0000-0001-5487-9039
Russian Federation, Moscow

Elena S. Klimashina

Lomonosov Moscow State University

Email: alenakovaleva@gmail.com
ORCID iD: 0000-0002-7441-7381

Cand. Sci. (Chem.)

Russian Federation, Moscow

Pavel V. Evdokimov

Lomonosov Moscow State University

Email: pavel.evdokimov@gmail.com
ORCID iD: 0000-0003-4398-054X

Cand. Sci. (Chem.)

Russian Federation, Moscow

Andrei A. Tikhonov

Lomonosov Moscow State University

Email: andytikhon94@gmail.com
ORCID iD: 0000-0003-3372-5393
Russian Federation, Moscow

Valerii I. Putlayev

Lomonosov Moscow State University

Email: valery.putlayev@gmail.com
ORCID iD: 0000-0001-7601-6787

Cand. Sci. (Chem.)

Russian Federation, Moscow

Georgii A. Shipunov

Lomonosov Moscow State University

Email: shipunovgeorge@gmail.com
ORCID iD: 0000-0003-4495-7050
Russian Federation, Moscow

Vladislav A. Zatsepin

Lomonosov Moscow State University

Email: gyglvladislav@gmail.com
ORCID iD: 0000-0001-8233-2989
Russian Federation, Moscow

Vadim E. Dubrov

Lomonosov Moscow State University

Email: vduort@gmail.com
ORCID iD: 0000-0001-5407-0432

Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Natal’ia V. Danilova

Lomonosov Moscow State University

Email: natalyadanilova@gmail.com
ORCID iD: 0000-0001-7848-6707

Cand. Sci. (Med.)

Russian Federation, Moscow

Pavel G. Malkov

Lomonosov Moscow State University

Email: malkovp@fbm.msu.ru
ORCID iD: 0000-0001-5074-3513

Cand. Sci. (Med.)

Russian Federation, Moscow

References

  1. Karyakin N.N., Gorbatov R.O., Novikov A.E., Niftullaev R.M. [Surgical treatment of patients with tumors of long bones of upper limbs using tailored 3D printed bone substitute implants]. Genij Ortopedii [Orthopaedic Genius]. 2017;23(3):323-330. (In Russian). doi: 10.18019/1028-4427-2017-23-3-323-330.
  2. Kasyanova E.S., Kopelev P.V., Alexandrova S.A. [Analysis of the viability of bone marrow mesenchymal stromal cells cultivated on osteoreplacement material BIOSIT-SR ELCOR after surface modification bycollagen type I]. Byulleten’ innovatsionnykh tekhnologii [Bulletin of Innovative Technologies]. 2018;2(3(7)):32-37. (In Russian).
  3. Kryukov E.V., Brizhan’ L.K., Khominets V.V., Davydov D.V., Chirva Yu.V., Sevastianov V.I. et al. [Clinical use of scaffold-technology to manage extensive bone defects]. Genij Ortopedii [Orthopaedic Genius]. 2019;25(1):49-57. (In Russian). doi: 10.18019/1028-4427-2019-25-1-49-57.
  4. Khominets V.V., Vorobev K.A., Sokolova M.O., Ivanova A.K., Komarov A.V. [Allogeneic osteoplastic materials for reconstructive surgery of combat injuries]. Izvestiya Rossiiskoi Voenno-meditsinskoi akademii [Russian Military Medical Academy Reports]. 2022;41(3):309- 314. (In Russian). doi: 10.17816/rmmar109090.
  5. Bai X., Gao M., Syed S., Zhuang J., Xu X., Zhang X.Q. Bioactive hydrogels for bone regeneration. Bioact Mater. 2018;3(4):401-417. doi: 10.1016/j.bioactmat.2018.05.006.
  6. van der Heide D., Cidonio G., Stoddart M.J., D’Este M. 3D printing of inorganic-biopolymer composites for bone regeneration. Biofabrication. 2022;14(4). doi: 10.1088/1758-5090/ac8cb2.
  7. Wu Y., Zeng W., Xu J., Sun Y., Huang Y., Xiang D. et al. Preparation, physicochemical characterization, and in vitro and in vivo osteogenic evaluation of a bioresorbable, moldable, hydroxyapatite/poly(caprolactone-co-lactide) bone substitute. J Biomed Mater Res A. 2023;111(3):367-377. doi: 10.1002/jbm.a.37463.
  8. Kitamura M., Ohtsuki C., Iwasaki H., Ogata S., Tanihara M., Miyazaki T. The controlled resorption of porous alpha-tricalcium phosphate using a hydroxypropylcellulose coating. J Mater Sci Mater Med. 2004;15(10): 1153-1158. doi: 10.1023/B:JMSM.0000046399.40310.47.
  9. Bohner M. Resorbable biomaterials as bone graft substitutes. 2010;13(1-2):24-30. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1369702110700146. doi: 10.1016/S1369-7021(10)70014-6.
  10. Hing K.A. Bioceramic bone graft substitutes: influence of porosity and chemistry. Int J Appl Ceram Technol. 2005;2(3):184-199. doi: 10.1111/j.1744-7402.2005.02020.x.
  11. Komlev V.S., Bozo I.I., Deev R.V., Gurin A.N. Bioactivity and effect of bone formation for octacalcium phosphate ceramics. In: Octacalcium Phosphate Biomaterials. 2020. p. 85-119. doi: 10.1016/B978-0-08-102511-6.00005-4. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081025116000054.
  12. Suzuki O. Octacalcium phosphate: osteoconductivity and crystal chemistry. Acta Biomater. 2010;6(9):3379-3387. doi: 10.1016/j.actbio.2010.04.002.
  13. Miño-Fariña N., Muñoz-Guzón F., López-Peña M., Ginebra M.P., Del Valle-Fresno S., Ayala D. et al. Quantitative analysis of the resorption and osteoconduction of a macroporous calcium phosphate bone cement for the repair of a critical size defect in the femoral condyle. Vet J. 2009;179(2):264-272. doi: 10.1016/j.tvjl.2007.09.011.
  14. Sutradhar A., Paulino G.H., Miller M.J., Nguyen T.H. Topological optimization for designing patient-specific large craniofacial segmental bone replacements. Proc Natl Acad Sci USA. 2010;107(30):13222-13227. doi: 10.1073/pnas.1001208107.
  15. Al-Tamimi A.A., Peach C., Fernandes P.R., Cseke A., Bartolo P.J.D.S. Topology Optimization to Reduce the Stress Shielding Effect for Orthopedic Applications. Procedia CIRP. 2017;65:202-206. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2212827117305425.
  16. Querin O.M., Victoria M., Alonso C., Ansola R., Martí P. Topology Optimization as a Digital Design Tool. In: Topology Design Methods for Structural Optimization. Elsevier; 2017. p. 93-111. doi: 10.1016/B978-0-08-100916-1.00006-4. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081009161000064.
  17. Tikhonov A.A., Yevdokimov P.V., Putlyayev V.I., Safronova T.V., Filippov Ya.Yu. [On architecture of osteoconductive bioceramic implants]. Materialovedenie [Materials Science]. 2018;(8):43-48. (In Russian). doi: 10.31044/1684-579Х-2018-0-8-43-48.
  18. Kapfer S.C., Hyde S.T., Mecke K., Arns C.H., Schröder-Turk G.E. Minimal surface scaffold designs for tissue engineering. Biomaterials. 2011;32(29):6875-6882. doi: 10.1016/j.biomaterials.2011.06.012.
  19. Tikhonov A.A., Kukueva E.V., Evdokimov P.V., Klimashina E.S., Putlyaev V.I., Shcherbakov I.M. et al. [Synthesis of substituted octacalcium phosphate for filling composite implants based on polymer hydrogels produced by stereolithographic 3d printing] Neorganicheskie materialy [Inorganic Materials]. 2018;54(10):1123-1132. (In Russian). doi: 10.1134/s0002337x18100172.
  20. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676-682. doi: 10.1038/nmeth.2019.
  21. Mohiuddin O.A., Campbell B., Poche J.N., Ma M., Rogers E., Gaupp D. et al. Decellularized Adipose Tissue Hydrogel Promotes Bone Regeneration in Critical-Sized Mouse Femoral Defect Model. Front Bioeng Biotechnol. 2019;7:211. doi: 10.3389/fbioe.2019.00211.
  22. Dau M., Ganz C., Zaage F., Frerich B., Gerber T. Hydrogel-embedded nanocrystalline hydroxyapatite granules (Elastic blocks) based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model. Int J Nanomedicine. 2017;12:7393-7404.
  23. Frasca S., Norol F., Le Visage C., Collombet J.M., Letourneur D., Holy X. et al. Calcium-phosphate ceramics and polysaccharide-based hydrogel scaffolds combined with mesenchymal stem cell differently support bone repair in rats. J Mater Sci Mater Med. 2017;28(2):35. doi: 10.1007/s10856-016-5839-6.
  24. Lohmann P., Willuweit A., Neffe A.T., Geisler S., Gebauer T.P., Beer S. et al. Bone regeneration induced by a 3D architectured hydrogel in a rat critical-size calvarial defect. Biomaterials. 2017;113:158-169. doi: 10.1016/j.biomaterials.2016.10.039.
  25. Karalkin P.A., Sergeeva N.S., Komlev V.S., Sviridova I.K., Kirsanova V.A., Akhmedova S.A. et al. [Biocompatibility and osteoplastic properties of mineral polymer composite materials based on sodium alginate, gelatin, and calcium phosphates intended for 3d-printing of the constructions for bone replacement]. Geny i kletki [Genes and Cells]. 2016;11(3):94-101. (In Russian).
  26. Muraev A.A., Bonartsev A.P., Gazhva Yu.V., Riabova V.M., Volkov A.V., Zharkova I.I., et al. [Development and Preclinical Studies of Orthotopic Bone Implants Based on a Hybrid Construction from Poly(3-Hydroxybutyrate) and Sodium Alginate]. Sovremennye tehnologii v medicine [Modern Technologies in Medicine]. 2016;8(4):42. (In Russian). doi: 10.17691/stm2016.8.4.06.
  27. Bi S., Wang P., Hu S., Li S., Pang J., Zhou Z. et al. Construction of physical-crosslink chitosan/PVA double-network hydrogel with surface mineralization for bone repair. Carbohydr Polym. 2019;224:115176. doi: 10.1016/j.carbpol.2019.115176.
  28. Luneva S.N., Talashova I.A., Osipova E.V., Nakoskin A.N., Emanov A.A. [Influence of the Composition of Biocomposite Materials Implanted in Perforated Metaphyseal Defects on Reparative Regeneration and Mineralization of Bone Tissue] Byulleten’ eksperimental’noi biologii i meditsiny [Bulletin of Experimental Biology and Medicine]. 2013;156(8): 255-259. (In Russian).
  29. Susin C., Lee J., Fiorini T., Koo K.T., Schüpbach P., Finger Stadler A. et al. Screening of Hydroxyapatite Biomaterials for Alveolar Augmentation Using a Rat Calvaria Critical-Size Defect Model: Bone Formation/Maturation and Biomaterials Resolution. Biomolecules. 2022;12(11):1677. doi: 10.3390/biom12111677.
  30. Wang M., Gu Z., Li B., Zhang J., Yang L., Zheng X. et al. Bioactive Nanocomposite Microsponges for Effective Reconstruction of Critical-Sized Calvarial Defects in Rat Model. Int J Nanomedicine. 2022;17:6593-6606. doi: 10.2147/IJN.S389194.
  31. van der Stok J., Koolen M.K., de Maat M.P., Yavari S.A., Alblas J., Patka P. et al. Full regeneration of segmental bone defects using porous titanium implants loaded with BMP-2 containing fibrin gels. Eur Cell Mater. 2015;29:141-153; discussion 153-154. doi: 10.22203/ecm.v029a11.
  32. Ando K., Imagama S., Kobayashi K., Ito K., Tsushima M., Morozumi M. et al. Effects of a self-assembling peptide as a scaffold on bone formation in a defect. PLoS One. 2018;13(1):e0190833. doi: 10.1371/journal.pone.0190833.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Isometric projection of computer models of three-dimensional structures with different architectures: a — an elementary cell of a Kelvin type structure; b — an elementary cell of a Gyroid type structure; c — a cylindrical structure with a Kelvin type architecture; d — a cylindrical structure with a Gyroid type architecture

Download (28KB)
3. Fig. 2. The view of surgical wound: а — bone defect with implanted material; b — bone augmentation by plate and screws

Download (40KB)
4. Fig. 3. The cross sections of femur at the defect level (Control group): a — after 3 weeks; b — after 6 weeks. Staining with hematoxylin and eosin. Mag. ×20

Download (63KB)
5. Fig. 4. The cross sections of femur at the defect level (Chronos group): а — after 3 weeks; b — after 6 weeks. Staining with hematoxylin and eosin. Mag. ×20

Download (54KB)
6. Fig. 5. The cross sections of femur at the defect level (Gyroid group): а — after 3 weeks; b — 6 after weeks. Staining with hematoxylin and eosin. Mag. ×20

Download (70KB)
7. Fig. 6. The cross sections of femur at the defect level (Kelvin group): а — after 3 weeks; b — after 6 weeks. Staining with hematoxylin and eosin. Mag. ×20

Download (65KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».