Experimental Validation of Antimicrobial Drug Combinations for Bone Cement Impregnation

Cover Page

Cite item

Abstract

Background. The implantation of an antimicrobial spacer is widely used in the comprehensive treatment of periprosthetic joint infection (PJI). Most commonly, bone cement is additionally impregnated with vancomycin, which is active only against Gram-positive bacteria. However, there is a global increase in Gram-negative bacterial resistance to most antibiotics, necessitating the development of new approaches to overcome this resistance, including in the context of local antibacterial therapy.

The aim of the study was to determine the duration of antimicrobial activity and the mechanical properties of gentamicin-containing bone cement samples additionally impregnated with the combinations of highly dispersed silver (HD-Ag) and various antibiotics.

Methods. Control samples were prepared using the commercial polymethylmethacrylate-based bone cement DePuy CMW 3 Gentamicin (DePuy Synthes), which contains 4.22% gentamicin. Additionally, six experimental samples with different combinations of antimicrobial agents were prepared and tested. Antimicrobial activity (AMA) was assessed against S. aureus (MSSA, MRSA), K. pneumoniae, and P. aeruginosa. The mechanical properties of the most effective samples were evaluated in comparison with the control samples. Statistical analysis was performed using the Past 4 software system.

Results. The control samples of commercial bone cement demonstrated the shortest duration of activity against MSSA (7 days) and showed no activity against MRSA or Gram-negative bacteria. The addition of 10 wt% fosfomycin and HD-Ag to the bone cement (BC 1) tripled the AMA duration against MSSA, K. pneumoniae, and P. aeruginosa. The addition of 5 wt% vancomycin to BC 1 (BC 2) extended the AMA duration against Gram-negative bacteria to 14-16 days and against Staphylococcus spp. to 4 weeks. The highest activity against Gram-negative bacteria was observed in samples containing HD-Ag and 10 wt% aztreonam (BC 5 and BC 6), whose mechanical properties did not significantly differ from the control samples.

Conclusion. Combinations containing HD-Ag, vancomycin, fosfomycin, and aztreonam demonstrated prolonged antimicrobial activity. This may improve the effectiveness of the debridement stage in two-stage revision arthroplasty for hip periprosthetic joint infection, making these combinations promising for clinical application.

About the authors

Svetlana A. Bozhkova

Vreden National Medical Research Center of Traumatology and Orthopedics

Email: clinpharm-rniito@yandex.ru
ORCID iD: 0000-0002-2083-2424

Dr. Sci. (Med.), Professor

Russian Federation, St. Petersburg

Magomed Sh. Gadzhimagomedov

Vreden National Medical Research Center of Traumatology and Orthopedics

Author for correspondence.
Email: orthopedist8805@yandex.ru
ORCID iD: 0009-0001-6113-0277
Russian Federation, St. Petersburg

Ekaterina M. Gordina

Vreden National Medical Research Center of Traumatology and Orthopedics

Email: emgordina@win.rniito.ru
ORCID iD: 0000-0003-2326-7413

Cand. Sci. (Med.)

Russian Federation, St. Petersburg

Alexander P. Antipov

Vreden National Medical Research Center of Traumatology and Orthopedics

Email: a.p.antipov@ya.ru
ORCID iD: 0000-0002-9004-5952
Russian Federation, St. Petersburg

Gleb V. Vaganov

Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”

Email: glebvaganov@mail.ru
ORCID iD: 0000-0002-0210-7456

Cand. Sci. (Tech.)

Russian Federation, St. Petersburg

Vladimir E. Yudin

Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”

Email: yudinve@gmail.com
ORCID iD: 0000-0002-5517-4767

Dr. (Phys.-Math.)

Russian Federation, St. Petersburg

References

  1. Kurtz S.M., Lau E.C., Son M.S., Chang E.T., Zimmerli W., Parvizi J. Are We Winning or Losing the Battle With Periprosthetic Joint Infection: Trends in Periprosthetic Joint Infection and Mortality Risk for the Medicare Population. J Arthroplasty. 2018;33(10):3238-3245. doi: 10.1016/j.arth.2018.05.042.
  2. McMaster Arthroplasty Collaborative (MAC). Incidence and Predictors of Prosthetic Joint Infection Following Primary Total Knee Arthroplasty: A 15-Year Population-Based Cohort Study. J Arthroplasty. 2022;37(2):367-372.e1. doi: 10.1016/j.arth.2021.10.006.
  3. Premkumar A., Kolin D.A., Farley K.X., Wilson J.M., McLawhorn A.S., Cross M.B. et al. Projected Economic Burden of Periprosthetic Joint Infection of the Hip and Knee in the United States. J Arthroplasty. 2021;36(5): 1484-1489.e3. doi: 10.1016/j.arth.2020.12.005.
  4. Винклер Т., Трампуш А., Ренц Н., Перка К., Божкова С.А. Классификация и алгоритм диагностики и лечения перипротезной инфекции тазобедренного сустава. Травматология и ортопедия России. 2016; 22(1):33-45. doi: 10.21823/2311-2905-2016-0-1-33-45. Winkler T., Trampuz A., Renz N., Perka C., Bozhkova S.A. Сlassification and algorithm for diagnosis and treatment of hip periprosthetic infection. Traumatology and Orthopedics. 2016;22(1):33-35. (In Russian). doi: 10.21823/2311-2905-2016-0-1-33-45.
  5. Buchholz H.W., Engelbrecht H. Depot effects of various antibiotics mixed with Palacos resins. Chirurg. 1970;41(11):511-515.
  6. Durbhakula S.M., Czajka J., Fuchs M.D., Uhl R.L. Spacer endoprosthesis for the treatment of infected total hip arthroplasty. J Arthroplasty. 2004;19(6):760-767. doi: 10.1016/j.arth.2004.02.037.
  7. Joseph T.N., Chen A.L., Di Cesare P.E. Use of antibiotic-impregnated cement in total joint arthroplasty. J Am Acad Orthop Surg. 2003;11(1):38-47. doi: 10.5435/00124635-200301000-00006.
  8. Tande A.J., Patel R. Prosthetic Joint Infection. Clin Microbiol Rev. 2014;27(2):302-345. doi: 10.1128/CMR.00111-13.
  9. Rodríguez-Pardo D., Pigrau C., Lora-Tamayo J., Soriano A., del Toro M.D., Cobo J. et al. Gram-negative Prosthetic Joint Infection: Outcome of a Debridement, Antibiotics and Implant Retention Approach. A Large Multicentre Study. Clin Microbiol Infect. 2014;20(11):O911-O919. doi: 10.1111/1469-0691.12649.
  10. Hsieh P.H., Lee M.S., Hsu K.Y., Chang Y.H., Shih H.N., Ueng S.W. Gram-negative Prosthetic Joint Infections: Risk Factors and Outcome of Treatment. Clin Infect Dis. 2009;49(7):1036-1043. doi: 10.1086/605593.
  11. Zmistowski B., Fedorka C.J., Sheehan E., Deirmengian G., Austin M.S., Parvizi J. Prosthetic Joint Infection Caused by Gram-negative Organisms. J Arthroplast. 2011; 26(6 Suppl):104-108. doi: 10.1016/j.arth.2011.03.044.
  12. Конев В.А., Божкова С.А., Нетылько Г.И., Афанасьев А.В, Румакин В.П., Полякова Е.М. и др. Результаты применения фосфомицина для импрегнации остеозамещающих материалов при лечении хронического остеомиелита. Травматология и ортопедия России. 2016;22(2):43-56. doi: 10.21823/2311-2905-2016-0-2-43-56. Konev V.A., Bozhkova S.A., Netylko G.I., Afanasiev A.V., Rumakin V.P., Polyakova E.M. et al. Results of the fosfomycin application for the impregnation of bone replacement materials in the treatment of chronic osteomyelitis. Traumatology and Orthopedics of Russia. 2016:22(2);43-56. (In Russian). doi: 10.21823/2311-2905-2016-0-2-43-56.
  13. Al Thaher Y., Yang L., Jones S.A., Perni S., Prokopovich P. LbL-assembled gentamicin delivery system for PMMA bone cements to prolong antimicrobial activity. PLoS One. 2018;13(12):e0207753. doi: 10.1371/journal.pone.0207753.
  14. Lunz A., Omlor G.W., Schmidt G., Moradi B., Lehner B., Streit M.R. Quality of life, infection control, and complication rates using a novel custom-made articulating hip spacer during two-stage revision for periprosthetic joint infection. Arch Orthop Trauma Surg. 2022;142(12):4041-4054. doi: 10.1007/s00402-021-04274-4.
  15. Martínez-Pastor J.C., Muñoz-Mahamud E., Vilchez F., García-Ramiro S., Bori G., Sierra J. et al. Outcome of acute prosthetic joint infections due to gram-negative bacilli treated with open debridement and retention of the prosthesis. Antimicrob Agents Chemother. 2009;53(11):4772-4777. doi: 10.1128/AAC.00188-09.
  16. Tarabichi S., Goh G.S., Zanna L., Qadiri Q.S., Baker C.M., Gehrke T. et al. Time to Positivity of Cultures Obtained for Periprosthetic Joint Infection. J Bone Joint Surg Am. 2023;105(2):107-112. doi: 10.2106/JBJS.22.00766.
  17. Gasparini G., De Gori M., Calonego G., Della Bora T., Caroleo B., Galasso O. Drug elution from high-dose antibiotic-loaded acrylic cement: a comparative, in vitro study. Orthopedics. 2014;37(11):e999-1005. doi: 10.3928/01477447-20141023-57.
  18. Gálvez-López R., Peña-Monje A., Antelo-Lorenzo R., Guardia-Olmedo J., Moliz J., Hernández-Quero J. et al. Elution kinetics, antimicrobial activity, and mechanical properties of 11 different antibiotic loaded acrylic bone cement. Diagn Microbiol Infect Dis. 2014;78(1):70-74. doi: 10.1016/j.diagmicrobio.2013.09.014.
  19. Krassnig R., Hohenberger G., Schwarz A., Goessler W., Feierl G., Wildburger R. et al. In vitro testing of silver-containing spacer in periprosthetic infection management. Sci Rep. 2021;11(1):17261. doi: 10.1038/s41598-021-96811-9.
  20. Божкова С.А., Гордина Е.М., Марков М.А., Афанасьев А.В., Артюх В.А., Малафеев К.В. и др. Влияние комбинации ванкомицина с препаратом серебра на длительность антимикробной активности костного цемента и формирование биопленки штаммом MRSA. Травматология и ортопедия России. 2021;27(2):54-64. doi: 10.21823/2311-2905-2021-27-2-54-64 2021. Bozhkova S.A., Gordina E.M., Markov M.A., Afanasyev A.V., Artyukh V.A., Malafeev K.V. et al. The Effect of Vancomycin and Silver Combination on the Duration of Antibacterial Activity of Bone Cement and Methicillin-Resistant Staphylococcus aureus Biofilm Formation. Traumatology and Orthopedics of Russia. 2021;27(2):54-64. (In Russian). doi: 10.21823/2311-2905-2021-27-2-54-64 2021.
  21. Божкова С.А., Полякова Е.М., Афанасьев А.В., Лабутин Д.В., Ваганов Г.В., Юдин В.Е. Фосфомицин — возможности применения для локальной терапии перипротезной инфекции. Клиническая микробиология и антимикробная химиотерапия. 2016:18(2): 104-112. Bozhkova S.A., Polyakova E.M., Afanasiev A.V., Labutin D.V., Vaganov G.V., Yudin V.E. Potential for the Use of Fosfomycin in the Topical Treatment of Periprosthetic Joint Infection. Clinical Microbiology and Antimicrobial Chemotherapy. 2016:18(2):104-112.
  22. Anagnostakos K., Meyer C. Antibiotic Elution from Hip and Knee Acrylic Bone Cement Spacers: A Systematic Review. Biomed Res Int. 2017;2017:4657874. doi: 10.1155/2017/4657874.
  23. Bitsch R.G., Kretzer J.P., Vogt S., Büchner H., Thomsen M.N., Lehner B. Increased antibiotic release and equivalent biomechanics of a spacer cement without hard radio contrast agents. Diagn Microbiol Infect Dis. 2015;83(2):203-209. doi: 10.1016/j.diagmicrobio.2015.06.019.
  24. Sanz-Ruiz P., Villanueva-Martinez M., Berberich C. Benefit and risks of antibiotic-loaded bone cements. In: Management of Periprosthetic Joint Infection. Ed. Kuhn D. Heidelberg: Springer-Verlag; 2018. P. 217-218.
  25. Парвизи Д., Герке Т. Материалы второй международной согласительной конференции по скелетно-мышечной инфекции. СПб.: РНИИТО им. Р.Р. Вредена. 2019. С. 320. Parvizi J., Gehrke T. Proceedings of the second international consensus meeting on musculoskeletal infection. St. Petersburg : RNIITO im. R.R. Vredena. 2019. 314 р. (In Russian).
  26. Rodriguez J., Perez Alamino L., Garabano G., Taleb J.P., Del Sel H., Pesciallo C. Two-Stage Treatment of Chronic Periprosthetic Knee Infections With the Use of Gentamicin-Articulated Spacers: Success Rate and Predictors of Failure at the Minimum Seven-Year Follow-Up. Arthroplast Today. 2023;23:101177. doi: 10.1016/j.artd.2023.101177.
  27. Brooks J.R., Dusane D.H., Moore K., Gupta T., Delury C., Aiken S.S. et al. Pseudomonas aeruginosa biofilm killing beyond the spacer by antibiotic-loaded calcium sulfate beads: an in vitro study. J Bone Joint Infect. 2021;6(5): 119-129. doi: 10.5194/jbji-6-119-2021.
  28. Hsieh P.H., Chang Y.H., Chen S.H., Ueng S.W., Shih C.H. High concentration and bioactivity of vancomycin and aztreonam eluted from Simplex cement spacers in two-stage revision of infected hip implants: a study of 46 patients at an average follow-up of 107 days. J Orthop Res. 2006;24(8):1615-1621. doi: 10.1002/jor.20214.
  29. Yuenyongviwat V., Ingviya N., Pathaburee P., Tangtrakulwanich B. Inhibitory effects of vancomycin and fosfomycin on methicillin-resistant Staphylococcus aureus from antibiotic-impregnated articulating cement spacers. Bone Joint Res. 2017;6(3):132-136. doi: 10.1302/2046-3758.63.2000639.
  30. Божкова С.А., Касимова А.Р., Борисов А.М., Артюх В.А., Ливенцов В.Н. Клинико-экономическая эффективность использования Фосфомицина и Ванкомицина для импрегнации спейсеров при хирургическом лечении пациентов с перипротезной инфекцией. Забайкальский медицинский вестник. 2017;(2):122-131. doi: 10.52485/19986173_2017_2_122. Bozhkova S.A., Kasimova A.R., Borisov A.M., Artyukh V.A., Liventsov V.N. Clinical and economic effectiveness of using Fosfomycin and Vancomycin for spacer impregnation in the surgical treatment of patients with periprosthetic infection. Transbaikalian Medical Bulletin. 2017;(2):122-131. (In Russian). doi: 10.52485/19986173_2017_2_122.
  31. Дигтяр А.В., Карпинский М.Ю., Карпинская Е.Д. Экспериментальное исследование прочности костного цемента в зависимости от содержания антибиотика. Травма. 2019;20(1):79-83. doi: 10.22141/1608-1706.1.20.2019.158674. Dіgtiar A.V., Karpinsky M.Yu., Karpinska O.D. Experimental study of the strength of bone cement depending on the antibiotic content. Trauma. 2019;20(1):79-83. (In Ukrainian). doi: 10.22141/1608-1706.1.20.2019.158674.
  32. Kwong J.W., Abramowicz M., Kühn K.D., Foelsch C., Hansen E.N. High and Low Dosage of Vancomycin in Polymethylmethacrylate Cements: Efficacy and Mechanical Properties. Antibiotics (Basel). 2024;13(9):818. doi: 10.3390/antibiotics13090818.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 2. Mechanical properties of bone cement samples

Download (33KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».