Dead or alive — use of indocyanine green angiography for intraoperative assessment of bone vitality in nonunion fractures: a controlled case series of four patients
- Authors: Malagoli E.1,2, Vandenbulcke F.2, Ziadi M.3, Lucchesi G.4, Zini S.5, Kirienko A.1,6
-
Affiliations:
- Humanitas Clinical and Research Center – IRCCS
- Humanitas University
- King Abdullah Medical City
- Ortopediatria Center for Education, Research and Patient Care in Paediatric Orthopedics
- Policlinico San Pietro
- Humanitas University, Department of Biomedical Sciences
- Issue: Vol 30, No 2 (2024)
- Pages: 151-157
- Section: Modern technologies in traumatology and orthopedics
- URL: https://ogarev-online.ru/2311-2905/article/view/260245
- DOI: https://doi.org/10.17816/2311-2905-17494
- ID: 260245
Cite item
Full Text
Abstract
Background. Indocyanine green (ICG) fluorescence imaging is a surgical tool with increasing applications in various surgical disciplines. During nonunion resection, the assessment of bone vascularization is currently based only on the surgeon’s experience. We introduced the use of indocyanine green (ICG) angiography in orthopedics.
The aims of the study: 1) to use ICG fluorescence angiography to evaluate the bone perfusion in patients with atrophic nonunion, where poor or absent ICG flow reveals avascular tissue associated with bone necrosis requiring surgical resections; 2) to describe our case series of patients operated with this technique.
Methods. We used ICG angiography in patients operated for tibial nonunion resection. We administered 0.5 mg/kg of ICG powder dissolved in sterile saline at 2.5 mg/ml concentration. The time from the injection to the beginning of appreciation of the green dye was measured. Non-viable bone was resected accordingly. Patient underwent routine follow-up. We enrolled all the suitable patients operated from April 2019 to June 2021 and matched three control patients for each of them. We reviewed their medical records and noted any relevant data.
Results. We enrolled 4 cases and 12 controls, all male. The mean age was 30.8±6.9 years. The mean duration from trauma to surgery was 10.5 (0.7-25.0) months. The mean duration of surgery was 190.8±40.3 min. The defect size was 4.89±2.03 cm. ICG allowed rapid visualization of bone vascularization after 25-45 sec. No adverse events were observed. The mean external fixation time was 11.8±5.0 months. The mean external fixation index was 2.69±1.10. Seven patients needed a surgical revision during treatment. Three patients underwent reintervention after frame removal. There are no statistically significant differences between cases and controls.
Conclusions. The research findings of this study are limited by the small number of observations. However, this technique is safe, easy, and rapid and may contribute to intraoperative decision of how much to resect. Using ICG could objectively demonstrate bone perfusion to help surgeons to avoid massive bone defects.
Full Text
##article.viewOnOriginalSite##About the authors
Emiliano Malagoli
Humanitas Clinical and Research Center – IRCCS; Humanitas University
Email: emiliano.malagoli@gmail.com
ORCID iD: 0000-0003-0239-080X
Department of Biomedical Sciences
Italy, Rozzano (MI); Pieve Emanuele (MI)Filippo Vandenbulcke
Humanitas University
Author for correspondence.
Email: filippo.vandenbulcke@humanitas.it
ORCID iD: 0000-0002-4603-659X
Department of Biomedical Sciences
Italy, Pieve Emanuele (MI)Mosheer Ziadi
King Abdullah Medical City
Email: science66@gmail.com
ORCID iD: 0000-0002-9720-862X
Saudi Arabia, Makkah
Giovanni Lucchesi
Ortopediatria Center for Education, Research and Patient Care in Paediatric Orthopedics
Email: lucchesigiovanni@gmail.com
ORCID iD: 0000-0002-5262-8073
Italy, Bologna (BO)
Stefania Zini
Policlinico San Pietro
Email: stefaniazini@hotmail.it
Italy, Ponte San Pietro (BG)
Alexander Kirienko
Humanitas Clinical and Research Center – IRCCS; Humanitas University, Department of Biomedical Sciences
Email: alexander@kirienko.com
ORCID iD: 0000-0003-0107-3423
Italy, Rozzano (MI); Pieve Emanuele (MI)
References
- Mumford J.E., Simpson A.H.R.W. Management of Bone Defects. A Review of Available Techniques. Iowa Orthopc J. 1992;12:42-49.
- Nauth A., McKee M.D., Einhorn T.A., Watson J.T., Li R., Schemitsch E.H. Managing Bone Defects. J Orthop Trauma. 2011;25(8):462-466. doi: 10.1097/BOT.0b013e318224caf0.
- Mauffrey C., Barlow B.T., Smith W. Management of Segmental Bone Defects. J Am Acad Orthop Surg. 2015;23(3):143-153. doi: 10.5435/ JAAOS-D-14-00018.
- El-Rosasy M., Mahmoud A., El-Gebaly O., Lashin A., Rodriguez-Collazo E. Debridement technique and dead space management for infected non-union of the tibia. Int J Orthoplast Surg. 2019;2(1):29-36. doi: 10.29337/IJOPS.34.
- Chaudhary M.M. Infected nonunion of tibia. Indian J Orthop. 2017;51(3):256-268. doi: 10.4103/ortho.IJOrtho_199_16.
- Ghareeb P.A., Neustein T.M., Fang R.C., Payne D.E. Indocyanine Green Angiography: A Helpful Tool for Intraoperative Assessment of Upper Extremity Perfusion. Tech Hand Up Extrem Surg. 2017;21(3):101-106. doi: 10.1097/BTH.0000000000000162.
- Mothes H., Dönicke T., Friedel R., Simon M., Markgraf E., Bach O. Indocyanine-Green Fluorescence Video Angiography Used Clinically to Evaluate Tissue Perfusion in Microsurgery. J Trauma. 2004;57(5):1018-1024. doi: 10.1097/01.TA.0000123041.47008.70.
- Hannan C.M., Attinger C.E. Special Considerations in the Management of Osteomyelitis Defects (Diabetes, the Ischemic or Dysvascular Bed, and Irradiation). Semin Plast Surg. 2009;23(2):132-140. doi: 10.1055/s-0029-1214165.
- Parsons B., Strauss E. Surgical management of chronic osteomyelitis. Am J Surg. 2004;188(1A Suppl): 57S-66S. doi: 10.1016/S0002-9610(03)00292-7.
- Cierny G. 3rd, Mader J.T., Penninck J.J. A Clinical Staging System for Adult Osteomyelitis. Clin Orthop Relat Res. 2003;414:7-24. doi: 10.1097/01.blo.0000088564.81746.62.
- Tetsworth K., Cierny G. 3rd. Osteomyelitis Debridement Techniques. Clin Orthop Relat Res. 1999;(360):87-96. doi: 10.1097/00003086-199903000-00011.
- Doi N., Izaki T., Miyake S., Shibata T., Ishimatsu T., Shibata Y. et al. Intraoperative evaluation of blood flow for soft tissues in orthopaedic surgery using indocyanine green fluorescence angiography: A pilot study. Bone Joint Res. 2019;8(3):118-125. doi: 10.1302/2046-3758.83.BJR-2018-0151.R1.
- Alander J.T., Kaartinen I., Laakso A., Pätilä T., Spillmann T., Tuchin V.V. et al. A Review of Indocyanine Green Fluorescent Imaging in Surgery. Int J Biomed Imaging. 2012;2012: 940585. doi: 10.1155/2012/940585.
- Keller D.S., Ishizawa T., Cohen R., Chand M. Indocyanine green fluorescence imaging in colorectal surgery: overview, applications, and future directions. Lancet Gastroenterol Hepatol. 2017;2(10):757-766. doi: 10.1016/S2468-1253(17)30216-9.
- Capozzi V.A., Monfardini L., Sozzi G., Armano G., Rosati A., Gueli Alletti S. et al. Subcutaneous Vulvar Flap Viability Evaluation With Near-Infrared Probe and Indocyanine Green for Vulvar Cancer Reconstructive Surgery : A Feasible Technique. Front Surg. 2021;8:1-5. doi: 10.3389/fsurg.2021.721770.
- Capozzi V.A., Ceni V., Sozzi G., Cianciolo A., Gambino G., Pugliese M. et al. Endoscopic near infrared and indocyanine green to verify the viability of the subcutaneous flap for vulvar cancer. Gynecol Oncol. 2019;154(3):653-654. doi: 10.1016/j.ygyno.2019.06.018.
- Holm C., Tegeler J., Mayr M., Becker A., Pfeiffer U.J., Muhlbauer W. Monitoring free flaps using laser-induced fluorescence of indocyanine green: a preliminary experience. Microsurgery. 2002;22:278-287. doi: 10.1002/micr.10052.
- Duprée A., Rieß H., Detter C., Debus E.S., Wipper S.H. Utilization of indocynanine green fluorescent imaging (ICG-FI) for the assessment of microperfusion in vascular medicine. Innov Surg Sci. 2018;3(3):193-201. doi: 10.1515/iss-2018-0014.
- Miwa M., Shikayama T. ICG fluorescence imaging and its medical applications. In: 2008 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Applications. 2009;7160:1-9. doi: 10.1117/12.817856.
- Kim S.H., Cho W.S., Joung H.Y., Choi Y.E., Jung M. Perfusion of the Rotator Cuff Tendon According to the Repair Configuration Using an Indocyanine Green Fluorescence Arthroscope. A Preliminary Report. Am J Sports Med. 2016;45(3):659-665. doi: 10.1177/0363546516669778.
- Streeter S.S., Hebert K.A., Bateman L.M., Ray G.S., Dean R.E., Geffken K.T. et al. Current and Future Applications of Fluorescence Guidance in Orthopaedic Surgery. Mol Imaging Biol. 2023;25(1):46-57. doi: 10.1007/s11307-022-01789-z.
- Jiang S., Elliott J.T., Gunn J.R., Xu C., Ruiz A.J., Henderson E.R. et al. Endosteal and periosteal blood flow quantified with dynamic contrast-enhanced fluorescence to guide open orthopaedic surgery. Proc SPIE Int Soc Opt Eng. 2020;11222:112220F. doi: 10.1117/12.2546173.
- Gitajn I.L., Elliott J.T., Gunn J.R., Ruiz A.J., Henderson E.R., Pogue B.W. et al. Evaluation of bone perfusion during open orthopedic surgery using quantitative dynamic contrast-enhanced fluorescence imaging. Biomed Opt Express. 2020;11(11):6458-6469. doi: 10.1364/BOE.399587.
- Tang Y., Sin J.M., Gitajn I.L., Cao X., Han X., Elliott J.T., et al. Dynamic contrast-enhanced fluorescence imaging compared with MR imaging in evaluating bone perfusion during open orthopedic surgery. Proc SPIE Int Soc Opt Eng. 2022;11943:119430C. doi: 10.1117/12.2608382.
- Tang Y., Gitajn I.L., Cao X., Han X., Elliott J.T., Yu X. et al. Automated motion artifact correction for dynamic contrast-enhanced fluorescence imaging during open orthopedic surgery. Proc SPIE Int Soc Opt Eng. 2023;12361:1236104. doi: 10.1117/12.2650028.
- Mulica M., Horch R., Arkudas A., Cai A., Müller-Seubert W., Hauck T. et al. Does indocyanine green fluorescence angiography impact the intraoperative choice of procedure in free vascularized medial femoral condyle grafting for scaphoid nonunions? Front Surg. 2022;9:962450. doi: 10.3389/fsurg.2022.962450.
Supplementary files
