Different Models of Dual-Energy Bone DXA Scanners: A Comparative Study
- Authors: Petraikin A.V.1, Akhmad E.S.1, Semenov D.S.1, Artyukova Z.R.1, Kudryavtsev N.D.1, Petriaikin F.A.2, Nizovtsova L.A.1
-
Affiliations:
- Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
- Lomonosov Moscow State University
- Issue: Vol 28, No 2 (2022)
- Pages: 48-57
- Section: Theoretical and experimental studies
- URL: https://ogarev-online.ru/2311-2905/article/view/124869
- DOI: https://doi.org/10.17816/2311-2905-1731
- ID: 124869
Cite item
Full Text
Abstract
Background. Dual-energy X-ray absorptiometry (DXA) is an effective method for bone mineral density (BMD) and subcutaneous fat percentage estimation. The constant development of new densitometry techniques, the demographic change and the higher potential of artificial intelligence in healthcare enhance requirements for the high-quality measurements in DXA.
This study aimed to develop a quality control method for DXA scanners and compare four DXA systems with different X-ray geometries and manufacturers when simulating fat-water environments.
Methods. We evaluated the accuracy (relative error (ε%) and precision (CV%)) of the bone mineral density (BMD) measurements, performed by the four DXA scanners: 2 with narrow-angle fan beam (64- and 16-channel detectors (DXA-1, DXA-2)); 1 with wide-angle fan beam (DXA-3); 1 with pencil beam (DXA-4). We used a PHK (PHantom Kalium) designed to imitate spine. The PHK contained four vertebras filled with a K2HPO4 solution in various concentrations (50-200 mg/ml). The PHK also included paraffin patches (thickness 40 mm) to simulate the fat layer.
Results. DXA-1 and DXA-2 demonstrated the best CV% ranged from 0.56% to 1.05%. The least ε% was observed when scanning PHK with fat layer on DXA-1 and DXA-2 (1.74% and 0.85%) and DXA-4 (1.47%). DXA-3 produced significantly lower BMD (ε = -14.56%, p = 0.000). After removing the fat layer, we observed reduction (p = 0.000) of BMD for DXA- 1 and DXA-2 (ε = -5.11% and -6.12% respectively) and weak deviation (p = 0.80) for DXA-4 (0.87%). For DXA-3, removal of the fat layer also resulted in a significant reduction in BMD (ε = -16.44%, p = 0.000). The subcutaneous fat modeling showed that all these DXA systems automatically determine the percentage of fat in the scanned area with weak underestimation: for DXA-1, DXA-2 and DXA-4 the ε% were -5,9%, -6,3% and -2,3% respectively. CV% were 0.15%; 0.39%; 1.6%, respectively.
Conclusions. We proved a significant underestimation of the BMD measurements across the entire range of simulated parameters for the DXA scanners when the model did not include the subcutaneous fat layer. All models demonstrated high accuracy in measuring the fat layer, with the exception of the DXA-3 model, which was not assessed in these studies.
Full Text
##article.viewOnOriginalSite##About the authors
Alexey V. Petraikin
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Email: alexeypetraikin@gmail.com
ORCID iD: 0000-0003-1694-4682
SPIN-code: 6193-1656
Scopus Author ID: 6507474696
ResearcherId: P-7759-2017
Cand. Sci. (Med.)
Russian Federation, MoscowEkaterina S. Akhmad
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Author for correspondence.
Email: e.ahmad@npcmr.ru
ORCID iD: 0000-0002-8235-9361
SPIN-code: 5891-4384
Scopus Author ID: 56964518000
ResearcherId: P-7313-2017
Cand. Sci. (Med.)
Russian Federation, 24, Petrovka str., Moscow, 127051Dmitry S. Semenov
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Email: d.semenov@npcmr.ru
ORCID iD: 0000-0002-4293-2514
SPIN-code: 2278-7290
ResearcherId: P-5228-2017
Researcher, Department of Innovative Technology
Russian Federation, MoscowZlata R. Artyukova
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Email: zl.artyukova@gmail.com
ORCID iD: 0000-0003-2960-9787
SPIN-code: 7550-2441
Scopus Author ID: 57221433873
Junior Researcher, Department of Innovative Technology
Russian Federation, MoscowNikita D. Kudryavtsev
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Email: n.kudryavtsev@npcmr.ru
ORCID iD: 0000-0003-4203-0630
SPIN-code: 1125-8637
Scopus Author ID: 57213148303
ResearcherId: AAG-1869-2020
Junior Researcher, Department of Innovative Technology
Russian Federation, MoscowFedor A. Petriaikin
Lomonosov Moscow State University
Email: feda.petraykin@gmail.com
ORCID iD: 0000-0001-6923-3839
Russian Federation, Moscow
Ludmila A. Nizovtsova
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Email: nizovtsova@npcmr.ru
ORCID iD: 0000-0002-9614-4505
SPIN-code: 9957-8107
Scopus Author ID: 6602750908
ResearcherId: T-8987-2017
Dr. Sci. (Med.), Professor
Russian Federation, MoscowReferences
- Мельниченко Г.А., Белая Ж.Е., Рожинская Л.Я., Торопцова Н.В., Алексеева Л.И., Бирюкова Е.В. и др. Федеральные клинические рекомендации по диагностике, лечению и профилактике остеопороза. Проблемы эндокринологии. 2017;63(6):392-426. doi: 10.14341/probl2017636392-426. Mel’nichenko G.A., Belaya Zh.E., Rozhinskaya L.Ya., Toroptsova N.V., Alekseeva L.I., Biryukova E.V. et al. [Russian federal clinical guidelines on the diagnostics, treatment, and prevention of osteoporosis]. Problemy Endokrinologii [Problems of Endocrinology]. 2017;63(6):392-426. (In Russian). doi: 10.14341/probl2017636392-426.
- ISCD Official Positions - Adult - International Society for Clinical Densitometry (ISCD, 2019). Available from: https://iscd.app.box.com/s/5r713cfzvf4gr28q7zdccg2i7169fv86.
- Mattsson S., Thomas B.J. Development of methods for body composition studies. Phys Med Biol. 2006;51(13): R203-R228. doi: 10.1088/0031-9155/51/13/R13.
- Park A.J., Choi J.H., Kang H., Park K.J., Kim H.Y., Kim S.H. et al. Result of Proficiency Test and Comparison of Accuracy Using a European Spine Phantom among the Three Bone Densitometries. J Bone Metab. 2015;22(2): 45-49. doi: 10.11005/jbm.2015.22.2.45.
- Krueger D., Vallarta-Ast N., Checovich M., Gemar D., Binkley N. BMD measurement and precision: a comparison of GE Lunar Prodigy and iDXA densitometers. J Clin Densitom. 2012;15(1):21-25. doi: 10.1016/j.jocd.2011.08.003.
- Laugerette A., Schwaiger B.J., Brown K., Frerking L.C., Kopp F.K., Mei K. et al. DXA-equivalent quantification of bone mineral density using dual-layer spectral CT scout scans. Eur Radiol. 2019;29(9):4624-4634. doi: 10.1007/s00330-019-6005-6.
- Петряйкин А.В., Смолярчук М.Я., Петряйкин Ф.А., Низовцова Л.А., Артюкова З.Р., Сергунова К.А. и др. Оценка точности денситометрических исследований. Применение фантома РСК ФК2. Травматология и ортопедия России. 2019;25(3):124-134. doi: 10.21823/2311-2905-2019-25-3-124-134. Petraikin A.V., Smolyarchuk М.J., Petryaykin F.A., Nizovtsova L.A., Artyukova Z.R., Sergunova К.A. et al. [Assessment the accuracy of Densitometry Measurements using DMA PP2 Phantom]. Travmatologiya i ortopediya Rossii [Traumatology and orthopedics of Russia]. 2019;25(3):124-134. (In Russian). doi: 10.21823/2311-2905-2019-25-3-124-134.
- Закроева А.Г., Бабалян В.Н., Габдулина Г.Х., Лобанченко О.В., Ершова О.Б., Исаева C.М. и др. Состояние проблемы остеопороза в странах Евразийского региона. Остеопороз и остеопатии. 2020;23(4):19-29. doi: 10.14341/osteo12700. Zakroyeva A.G., Babalyan V., Gabdulina G., Lobanchenko О., Ershova О.B., Issaeva S. et al. [Burden of Osteoporosis in the Countries of the Eurasian Region]. Osteoporoz i osteopatii [Osteoporosis and Bone Diseases]. 2020;23(4):19-29. (In Russian). doi: 10.14341/osteo12700.
- Kanis J.A., Johnell O. Requirements for DXA for the management of osteoporosis in Europe. Osteoporosis Int. 2005;16(3):229-238. doi: 10.1007/s00198-004-1811-2.
- Гусев А.В., Зарубина Т.В. Поддержка принятия врачебных решений в медицинских информационных системах медицинской организации. Врач и информационные технологии. 2017;(2):60-72. Gusev А.V., Zarubina Т.V. [Clinical decisions support in medical information systems of a medical organisation]. Vrach i informatsionnye tekhnologii [Information technologies for the Physician]. 2017;(2):60-72. (In Russian).
- Halldorsson B.V., Bjornsson A.H., Gudmundsson H.T., Birgisson E.O., Ludviksson B.R., Gudbjornsson B. A clinical decision support system for the diagnosis, fracture risks and treatment of osteoporosis. Comput Math Methods Med. 2015;2015:189769. doi: 10.1155/2015/189769.
- Dequeker J., Reeve J., Pearson J., Bright J., Felsenberg D., Kalender W. et al. Comac-Bme Quantitative Assessment Of Osteoporosis Study Group. Multicentre European COMAC-BME study on the standardisation of bone densitometry procedures. Technol Health Care. 1993;1(2):127-131. doi: 10.3233/THC-1993-1202.
- Kalender W.A., Felsenberg D., Genant H.K., Fischer M., Dequeker J., Reeve J. The European Spine Phantom--a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur J Radiol. 1995;20(2):83-92. doi: 10.1016/0720-048x(95)00631-y.
- Hind K., Cooper W., Oldroyd B., Davies A., Rhodes L. A cross-calibration study of the GE-lunar iDXA and prodigy for the assessment of lumbar spine and total hip bone parameters via three statistical methods. J Clin Densitom. 2015;18(1):86-92. doi: 10.1016/j.jocd.2013.09.011.
- Pearson D., Cawte S.A., Green D.J. A comparison of phantoms for cross-calibration of lumbar spine DXA. Osteoporosis Int. 2002;13(12):948-954. doi: 10.1016/10.1007/s001980200132.
- Kolta S., Ravaud P., Fechtenbaum J., DougadosM., Roux C. Accuracy and precision of 62 bone densitometers using a European Spine Phantom. Osteoporosis Int. 1999;10(1):14-19. doi: 10.1007/s001980050188.
- Van Hamersvelt R.W., Schilham A.M.R., Engelke K., den Harder A.M., de Keizer B., Verhaar H.J. et al. Accuracy of bone mineral density quantification using dual-layer spectral detector CT: a phantom study. Eur Radiol. 2017;27(10):4351-4359. doi: 10.1007/s00330-017-4801-4.
- Никитинская О.А., Торопцова Н.В. В помощь практикующему врачу: возможность мониторирования лечения остеопороза при исследовании минеральной плотности кости на разных аксиальных денситометрах. Медицинский алфавит. 2019;2(37):22-28. doi: 10.33667/2078-5631-2019-2-37(412)-22-28. Nikitinskaya O.A., Toroptsova N.V. [To help practitioner: monitoring treatment of osteoporosis in study of bone mineral density on different axial densitometers]. Meditsinskii alfavit [Medical Alphabet]. 2019;37(2):22-28. (In Russian). doi: 10.33667/2078–5631–2019–2–37(412)-22–28.
- Yu E.W., Bijoy J.T., Brown J.K., Finkelstein J.S. Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res. 2012;27(1):119-124. doi: 10.1002/jbmr.506.
- Guerrero-Pérez F., Casajoana A., Gómez-Vaquero C., Virgili N., López-Urdiales R., Hernández-Montoliu L. et al. Long-Term Effects in Bone Mineral Density after Different Bariatric Procedures in Patients with Type 2 Diabetes: Outcomes of a Randomized Clinical Trial. J Clin Med. 2020;9(6):1830. doi: 10.3390/jcm9061830.
- Yu E.W., Bouxsein M.L., Roy A.E., Baldwin C., Cange A., Neer R.M. et al. Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. J Bone Miner Res. 2014;29(3):542-550. doi: 10.1002/jbmr.2063.
- Helba M., Binkovitz L.A. Pediatric body composition analysis with dual-energy X-ray absorptiometry. Pediatr Radiol. 2009;39(7):647-656. doi: 10.1007/s00247-009-1247-0.
- Lifshitz F., Hecht J.P., Bermúdez E.F., Gamba C.A., Reinoso J.M., Casavalle P.L. et al. Body composition analysis by dual-energy X-ray absorptiometry in young preschool children. Eur J Clin Nutr. 2016;70(10):1203-1209. doi: 10.1038/ejcn.2016.38.
- Marzetti E., Calvani R., Tosato M., Cesari M., Di Bari M., Cherubini A. et al. Sarcopenia: an overview. Aging Clin Exp Res. 2017;29(1):11-17. doi: 10.1007/s40520-016-0704-5.
- Krueger D., Libber J., Sanfilippo J., Yu H.J., Horvath B., Miller C.G. et al. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms. J Clin Densitom. 2016;19(2):220-225. doi: 10.1016/j.jocd.2015.04.003.
- Аврунин А.С., Тихилов Р.М., Шубняков И.И., Карагодина М.П., Плиев Д.Г., Товпич И.Д. Ошибка воспроизводимости аппаратно-программного комплекса Lunar Prodigy (version Encore) (Prodigy) при исследовании фантомов и костных структур. Гений ортопедии. 2010;(4):104-110. Avrunin A.S., Tikhilov R.M., Shubniakov I.I., Karagodina M.P., Pliyev D.G., Tovpich I.D. [Reproducibility error of Lunar Prodigy (Version Encore) (Prodigy) apparatus-programming complex in studying phantoms and bone structures]. Genij Ortopedii. 2010;(4):104-110. (In Russian).
Supplementary files
