The Influence of Foliar Fertilizing on the Structural and Optical Properties of Wheat

Cover Page

Cite item

Full Text

Abstract

Throughout its life cycle a plant receives nutrients from the soil and fertilizers that are introduced into it and then absorbed by the roots. Higher plants have an additional ability to absorb nutrients when their leaves are sprayed with a solution of a certain concentration. The amount of fertilizers applied to the soil must be determined in accordance with the analysis of its composition. However, it’s not obligatory when we apply foliar fertilization method, since the properties of the leaves depend not only on the type of plant, but also on the conditions in which it grew. This study for the first time introduces a method for determining optimal concentrations of foliar fertilization based on the structure and optical properties of the plant leaf. In 2023, Kuraginskoe production farm was chosen as a site of a field experience aimed at studying foliar fertilization of Novosibirskaya 31 spring soft wheat ( Triticum L.). The experiment was conducted in 4 ways: 1) control; 2) one-time foliar fertilizing in the tillering phase; 3) two times foliar fertilizing: in tillering and shooting phase; 4) triple fertilizing: in tillering phase, the shooting, and the beginning of earing. We used electron microscopy pictures to assess the standard deviation of thylakoids size as a degree of ordering. Based on models of one-dimensional photonic crystals, graphs of the density of photonic states were calculated. From the analysis of the obtained fluorescent spectra of the flag leaves, changes in the intensity and width of the spectrum lines are visible. Comparison of contours of the peak corresponding to photosystem (PS) II shows a difference in half-widths, which indicates a more active pumping of energy in a plant treated with triple fertilizing. The methods used in the study let us calculate a correlation coefficient equal almost to 1, which means strong link of these parameters. The study has shown that the main mechanism for increasing crop yield when applying foliar fertilizing is a more efficient transfer of energy from PS II to PS I.

About the authors

E. R. Bukhanov

Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, L. V. Kirensky Institute of Physics, Russian Academy of Science, Siberian Branch; Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science

Email: k26tony@ya.ru
Krasnoyarsk, Russian Federation; Krasnoyarsk, Russian Federation

K. A. Afanasova

Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science

Email: shabanova.ksenia@mail.ru
Krasnoyarsk, Russian Federation

V. V. Vagner

Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Experimental Production Farm «Kuraginskoe»

Email: vagnervladimirviktorovich@mail.ru
Kuragino, Russian Federation

M. N. Volochaev

Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, L. V. Kirensky Institute of Physics, Russian Academy of Science, Siberian Branch

Email: volochaev91@mail.ru
Krasnoyarsk, Russian Federation

V. I. Nikitina

Krasnoyarsk State Agrarian University

Email: vi-nikitina@mail.ru
Krasnoyarsk, Russian Federation

S. A. Pyatina

Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science

Email: davcbetik@mail.ru
Krasnoyarsk, Russian Federation

A. D. Shefer

Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science

Email: shefer.ad@ksc.krasn.ru
Krasnoyarsk, Russian Federation

V. F. Shabanov

Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, L. V. Kirensky Institute of Physics, Russian Academy of Science, Siberian Branch; Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science

Email: shabanov@ksc.krasn.ru
Krasnoyarsk, Russian Federation; Krasnoyarsk, Russian Federation

References

  1. Буханов Е. Р., Коршунов М. А., Шабанов А. В. Оптические процессы в фотосинтезе // Сиб. лесн. журн. 2018. № 5. С. 19-32
  2. Буханов Е. Р., Шефер А. Д., Шабанов А. В., Гуревич Ю. Л., Крахалёв М. Н. Строение, оптические и спектральные характеристики эпикутикулярного воска хвои ели голубой // Сиб. лесн. журн. 2024. № 1. С. 97-106
  3. Давыдов А. С. Квантовая механика: учеб. пособ. 2-е изд., испр. и перераб. М.: Наука, 1973. 703 с
  4. Егоров В. С., Дзержинская А. А. Фолиарное применение удобрений и мехiнизм их поступления в растения // Пробл. агрохим. и экол. 2015. № 2. С. 51-57
  5. Коршунов М. А., Шабанов А. В., Буханов Е. Р., Шабанов В. Ф. Влияние длиннопериодической упорядоченности в структуре растений на первичные стадии фотосинтеза // ДАН. 2018. Т. 478. № 3. С. 280-283
  6. Стасик О. О., Киризий Д. А., Прядкина Г. А. Фотосинтез и проблемы повышения продуктивности растений // Физиол. раст. и генет. 2013. Т. 45. № 6. С. 501-515
  7. Тихонов А. Н. Трансформация энергии в хлоропластах - энергопреобразующих органеллах растительной клетки // Сорос. образов. журн. 1996. №. 4. С. 24-32
  8. Шабанов А. В., Коршунов М. А., Буханов Е. Р. Особенности усиления электромагнитного поля и увеличение плотности фотонных состояний в растительных фотонно-кристаллических структурах // Комп. опт. 2019. Т. 43. № 2. С. 231-237
  9. Шабанова К. А., Логинов Ю. Ю., Буханов Е. Р., Волочаев М. Н., Пятина С. А. Влияние структуры хлоропластов на плотность фотонных состояний и эффективность преобразования солнечной энергии // Сиб. аэрокосм. журн. 2021. Т. 22. № 4. С. 708-717
  10. Aguanno G. D., Mottiucci N., Scolora M., Bloemer M. J., Zheltikov A. M. Density of modes and tunneling times in finite one-dimensional photonic crystals: a comprehensive analysis // Phys. Rev. 2004. V. 70. N. 1. Article 016612
  11. Bukhanov E., Shabanov A. V., Volochaev M. N., Pyatina S. A. The role of periodic structures in light harvesting // Plants. 2021. V. 10. Iss. 9. Article 1967. 10 p
  12. Dekker J. P., Boekema E. J. Supramolecular organization of thylakoid membrane proteins in green plants // Biochim. Biophys. Acta (BBA) - Bioenergetics. 2005. V. 1706. N. 1-2. P. 12-39
  13. Fageria N. K., Filhoa M. P. B., Moreirab A., Guimaresa C. M. Foliar fertilization of crop plants //j. Plant Nutrit. 2009. V. 32. N. 6. P. 1044-1064
  14. Ferreira K. N., Iverson T. M., Maghlaoui K., Barber J., Iwata S. Architecture of the photosynthetic oxygen-evolving center // Science. 2004. V. 303. Iss. 5665. P. 1831-1838
  15. Foliar fertilization. Scientific principles and field practices. First ed. / Fernandez V., Sotiropoulos T., Brow P. (Eds.). Paris: JFA, 2013. 140 p
  16. Garab G. Self-assembly and structural-functional flexibility of oxygenic photosynthetic machineries: personal perspectives // Photosynth Res. 2016. V. 127. Iss. 1. P. 131-150
  17. Hu Y., Burcus Z., Shimidholter U. Effect of foliar fertilization on the growth and mineral nutrient content of maize seedlings under drought and salinity // Soil Sci. Plant Nutrit. 2008. V. 54. Iss. 1. P. 133-141
  18. Kamiya N., Shen J. R. Crystal structure of oxygen-evolving photo-system II from Thermosynechococcus vulcanus at 3.7-angstrom resolution // PNAS. 2003. V. 100. Iss. 1. P. 98-103
  19. Korshunov M. A., Shabanov A. V., Bukhanov E. R., Shabanov V. F. Effect of long-period ordering of the structure of a plant on the initial stages of photosynthesis // Dokl. Phys. 2018. V. 63. N. 1. P. 1-4 (Original Rus. text © M. A. Korshunov, A. V. Shabanov, E. R. Bukhanov, V. F. Shabanov, 2018, publ. in Dokl. Akad. Nauk. 2018. V. 478. N. 3. P. 280-283)
  20. Li M., Mukhopadhyay R., Svoboda V., Oung H. M. O., Mullendore D. L., Kirchhoff H. Measuring the dynamic response of the thylakoid architecture in plant leaves by electron microscopy // Plant Direct. 2020a. V. 4. Iss. 11. Article e00280
  21. Li F., Zhang L., Ji H., Xu Z., Zhou Y., Yang S. The specific W-boxes of GAPC5 promoter bound by TaWRKY are involved in drought stress response in wheat // Plant Sci. 2020b. V. 296. Article 110460
  22. Liu Z., Yan H., Wang K., Kuang T., Zhang J., Gui L., An X., Chang W. Crystal structure of spinach light-harvesting complex at 2.72 2 resolution // Nature. 2004. N. 428. P. 287-292
  23. Melash A. A., Mengistu D. K., Aberra D. A., Tsegay A. The influence of seeding rate and micronutrients foliar application on grain yield and quality traits and micronutrients of durum wheat //j. Cereal Sci. 2019. N. 85. P. 221-227
  24. Pietraszewska-Bogiel A., Gadella T. W. J. FRET microscopy: from principle to routine technology in cell biology //j. Microscopy. 2011. V. 241. N. 2. P. 111-118
  25. Shi J., Tian F., Lyu J., Yang M. Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications //j. Mater. Chem. B. 2015. V. 3. N. 35. P. 6989-7005
  26. Understanding and modeling Förster-type resonance energy transfer / Demir H. V., Hernandez Martinez P. L., Govorov A. (Eds.). Springer Briefs Appl. Sci. Technol. Springer Singapore, 2017. 40 p
  27. Vigneron J. P., Simonis P. Natural photonic crystals // Phys. B: Condensed Matter. 2012. V. 407. N. 20. P. 4032-4036
  28. Zaitseva R. I., Komarov N. M., Frid A. S., Anikina L. M., Zhyravleva A. S., Shumanova V. V., Sokolenko N. J., Popova G. G. The effect of soil salinization and pre-sowing seed treatment with silicon-containing micronutrient fertilizer on barley seedlings // IOP Conf. Ser.: The VIII Congr. Dokuchaev Soil Sci. Soc., 19-24 July 2021. Syktyvkar: IQP Publ., 2021. N. 862. Article 012089

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).