Niche modeling, habitat suitability, and range dynamics of the rare myxomycete species of Physarum auripigmentum under a changing climate
- Authors: Vlasenko V.A.1, Liu P.2, Vlasenko A.V.1
-
Affiliations:
- Central Siberian Botanical Garden of Siberian Branch of the Russian Academy of Sciences
- Jilin Agricultural University
- Issue: Vol 14, No 4 (2025)
- Pages: 20-29
- Section: Biological Sciences
- URL: https://ogarev-online.ru/2309-4370/article/view/382475
- DOI: https://doi.org/10.55355/snv2025144102
- ID: 382475
Cite item
Full Text
Abstract
Species distribution is undergoing rapid changes in the face of habitat modification and climate change. This raises ecological questions about the processes that governs species ranges and niches. Maximum entropy spatial distribution modelling (MaxEnt) solves this problem by inferring species distributions and environmental tolerance based on the occurrence data. The objective of this study was to create a model of the ecological niche and potential geographic distribution of the rare myxomycete species of Physarum auripigmentum to understand its ecological specificity and distribution patterns. The studied species is an epiphyte and xylobiont, colonizing the bark folds of living woody plants and dead wood. In mountainous regions, the species preferentially prefers tree bark and colonizes microhabitats as an epiphyte. Most areas globally are bioclimatically unsuitable for Physarum auripigmentum, falling below both the 10% and 50% thresholds for species presence. Modeling the potential geographic distribution and niche suggests that the distribution of Physarum auripigmentum is largely dependent on the availability of suitable substrate and microhabitats and that it is undemanding regarding the bioclimatic characteristics of the areas where its macrohabitats are present.
About the authors
Vyacheslav Alexandrovich Vlasenko
Central Siberian Botanical Garden of Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: vlasenkomyces@mail.ru
candidate of biological sciences, senior researcher of Mycology, Algology and Lichenology Laboratory
Russian Federation, NovosibirskPu Liu
Jilin Agricultural University
Email: pul@jlau.edu.cn
PhD, professor of Engineering Research Center of Edible and Medicinal Fungi
China, ChangchunAnastasia Vladimirovna Vlasenko
Central Siberian Botanical Garden of Siberian Branch of the Russian Academy of Sciences
Email: anastasiamix81@mail.ru
candidate of biological sciences, senior researcher of Mycology, Algology and Lichenology Laboratory
Russian Federation, NovosibirskReferences
- Zurell D., Franklin J., König C., Bouchet P.J., Dormann C.F., Elith J., Fandos G., Feng X., Guillera‐Arroita G., Guisan A., Lahoz‐Monfort J.J., Leitão P.J., Park D.S., Townsend Peterson A., Rapacciuolo G., Schmatz D.R., Schröder B., Serra‐Diaz J.M., Thuiller W., Yates K.L., Zimmermann N.E., Merow C. A standard protocol for reporting species distribution models // Ecography. 2020. Vol. 43, iss. 9. P. 1261–1277. doi: 10.1111/ecog.04960.
- Phillips S.J., Dudík M. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation // Ecography. 2008. Vol. 31, iss. 2. P. 161–175. doi: 10.1111/j.0906-7590.2008.5203.x.
- Phillips S.J., Anderson R.P., Schapire R.E. Maximum entropy modeling of species geographic distributions // Ecological Modelling. 2006. Vol. 190, iss. 3–4. P. 231–259. doi: 10.1016/j.ecolmodel.2005.03.026.
- Wright R.N., Westerhoff D.V. New Forest SAC Management Plan. Lyndhurst: English Nature, 2001. 15 p.
- Hepinstall J.A., Krohn W.B., Sader S.A. Effects of niche width on the performance and agreement of avian habitat models // Predicting Species Occurrences. Issues of Scale and Accuracy / ed. by J.M. Scott, P.J. Heglund, M.L. Morrison, J.B. Haufler, M.G. Raphael, W.A. Wall, F.B. Samson. Washington: Island Press, 2002. P. 593–606.
- Brotons L., Thuiller W., Araújo M.B., Hirzel A.H. Presence-absence versus presence-only modelling methods for predicting bird habitat suitability // Ecography. 2004. Vol. 27, iss. 4. P. 437–448. doi: 10.1111/j.0906-7590.2004.03764.x.
- Hernandez P.A., Graham C.H., Master L.L., Albert D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods // Ecography. 2006. Vol. 29, iss. 5. P. 773–785. doi: 10.1111/j.0906-7590.2006.04700.x.
- Tsoar A., Allouche O., Steinitz O., Rotem D., Kadmon R. A comparative evaluation of presence-only methods for modelling species distribution // Diversity and Distributions. 2007. Vol. 13, iss. 4. P. 397–405.
- Gaston K.J., Fuller R.A. Biodiversity and extinction: losing the common and the widespread // Progress in Physical Geography: Earth and Environment. 2007. Vol. 31, iss. 2. P. 213–225. doi: 10.1177/0309133307076488.
- Власенко В.А. Особенности географического распространения редкого вида грибов Picipes rhizophilus (Basidiomycota) в условиях меняющегося климата // Сибирский экологический журнал. 2023. Т. 30, № 4. С. 459–467. doi: 10.15372/sej20230405.
- Aguilar M., Lado C. Ecological niche models reveal the importance of climate variability for the biogeography of protosteloid amoebae // ISME Journal. 2012. Vol. 6, iss. 8. P. 1506–1514. doi: 10.1038/ismej.2012.12.
- Almadrones-Reyes K.J., Dagamac N.H.A. Predicting local habitat suitability in changing climate scenarios: Applying species distribution modelling for Diderma hemisphaericum // Current Research in Environmental & Applied Mycology. 2018. Vol. 8, № 5. P. 492–500. doi: 10.5943/cream/8/5/2.
- Limbo-Dizon J.E., Almadrones-Reyes K.J., Macabago S.A.B., Dagamac N.H.A. Bioclimatic modeling for the prediction of the suitable regional geographical distribution of selected bright-spored myxomycetes in the Philippine archipelago // Biodiversitas: Journal of Biological Diversity. 2022. Vol. 23, № 5. P. 2285–2294. doi: 10.13057/biodiv/d230506.
- Власенко А.В., Власенко В.А. Пригодность местообитаний и динамика ареала редких пустынных видов миксомицетов рода Didymium в условиях глобального изменения климата в Азии // Известия Российской академии наук. Серия биологическая. 2024. Вып. 6. С. 796–808. doi: 10.31857/s1026347024060122.
- Novozhilov Yu.K., Schnittler M., Erastova D.A., Shchepin O.N. Myxomycetes of the Sikhote-Alin State Nature Biosphere Reserve (Far East, Russia) // Nova Hedwigia. 2017. Vol. 104, iss. 1–3. P. 183–209. doi: 10.1127/nova_hedwigia/2016/0394.
- Vlasenko A.V., Sambyla Ch.N., Novozhilov Yu.K., Vlasenko V.A. Rare myxomycete species from Siberia and first record of Tubifera dimorphotheca in Russia // Czech Mycology. 2021. Vol. 73, iss. 2. P. 215–228. doi: 10.33585/cmy.73209.
- Eliasson U. Coprophilous myxomycetes: Recent advances and future research directions // Fungal Diversity. 2013. Vol. 59. P. 85–90. doi: 10.1007/s13225-012-0185-6.
- Vlasenko A.V., Novozhilov Yu.K., Bondar A.A., Vlasenko V.A. Phylogeny of Trichia brunnea and new names in the genus Arcyria (Trichiales, Myxomycetes) // Микология и фитопатология. 2023. Т. 57, № 6. С. 385–393. doi: 10.31857/s0026364823060144.
- Hijmans R.J., Guarino L., Mathur P. DIVA-GIS. Version 7.5. 2012. Manual [Internet] // https://diva-gis.org/docs/DIVA-GIS_manual_7.pdf.
- Data [Internet] // DIVA-GIS. https://diva-gis.org/data.html.
- Climate data [Internet] // DIVA-GIS. https://diva-gis.org/climate.html.
- WorldClim [Internet] // https://worldclim.org.
- Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. Very high resolution interpolated climate surfaces for global land areas // International Journal of Climatology. 2005. Vol. 25, iss. 15. P. 1965–1978. doi: 10.1002/joc.1276.
- Olson D.M., Dinerstein E., Wikramanayake E.D., Burgess N.D., Powell G.V.N., Underwood E.C., D’amico J.A., Itoua I., Strand H.E., Morrison J.C., Loucks C.J., Allnutt T.F., Ricketts T.H., Kura Yu., Lamoreux J.F., Wettengel W.W., Hedao P., Kassem K.R. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity // BioScience. 2001. Vol. 51, iss. 11. P. 933–938. doi: 10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2.
- ArcGIS Online [Internet] // https://arcgis.com/apps/View/index.html?appid=d60ec415febb4874ac5e0960a6a2e448.
- Scheldeman X., Van Zonneveld M. Training manual on spatial analysis of plant diversity and distribution. Rome: Biodiversity International, 2010. 179 p.
- Власенко В.А., Турмунх Д., Назын Ч.Д., Власенко А.В. Моделирование ниши и особенности распространения копробионтных грибов в Азии на примере Cyathus stercoreus // Самарский научный вестник. 2021. Т. 10, № 3. С. 41–46. doi: 10.17816/snv2021103105.
- Physarum auripigmentum G.W. Martin, 1948 [Internet] // GBIF Backbone Taxonomy. https://gbif.org/species/3214946.
Supplementary files

