Mechanical stability of Fagus sylvatica L. in the conditions of the south of the East European Plain: the theory of loss of stability
- Authors: Kornienko V.O.1, Yaitsky A.S.2
-
Affiliations:
- Donetsk State University
- Samara State University of Social Sciences and Education
- Issue: Vol 13, No 2 (2024)
- Pages: 42-51
- Section: Biological Sciences
- URL: https://ogarev-online.ru/2309-4370/article/view/271339
- DOI: https://doi.org/10.55355/snv2024132104
- ID: 271339
Cite item
Full Text
Abstract
The paper considers the issues of ecological and biological features of the growth of the European beech in the territory of the steppe zone of Donbass in the conditions of the south of the East European plain. Taking into account the changing climate over the past 10 years, the issues of resistance of introduced species to temperature changes, the effects of snow and ice storms occurring within the seasons are becoming relevant. It was found that the greatest damage, from an ecological point of view, the plant experiences with sudden changes in weather conditions within the season (cyclic processes of freezing/thawing) and uneven heating of wood tissues during thawing, which locally reduces their physico-mechanical properties. As a result, the trunk or skeletal branches lose the property of relative uniformity. The uneven rate of change in mechanical properties leads to a loss of rigidity and increased stress, the upper part of the trunk becomes an additional glaciated mass, while the load on the thawed area approaches critical. The described effects are explained by the state of water in the vessels of woody plants. Thus, in the freezing/thawing cycle (seasonal phenomena), the phase state of free water and, as a result, its physical properties change. When passing through 0°C, ice melts in portions, which over time leads to an uneven decrease in the modulus of elasticity of the wood. As a result, the physical and mechanical properties of wood differ in different parts of the volume and change rapidly during the transitions of water from the solid phase to the liquid phase. The environmental consequences of this phenomenon are irreversible deformations of plant organs, a change in the architectonics of the crown and the angle of inclination of the trunk, in extreme cases, a fragment of the trunk and skeletal branches.
Full Text
##article.viewOnOriginalSite##About the authors
Vladimir Olegovich Kornienko
Donetsk State University
Author for correspondence.
Email: kornienkovo@mail.ru
Candidate of Biological Sciences, Head of the Research Department, Associate Professor of the Biophysics Department
Russian Federation, DonetskAndrey Stepanovich Yaitsky
Samara State University of Social Sciences and Education
Email: yaitsky@sgspu.ru
Senior Lecturer of the Biology, Ecology and Methods of Teaching Department
Russian Federation, SamaraReferences
- Rowe N., Speck T. Plant growth forms: an ecological and evolutionary perspective // New Phytologist. 2005. Vol. 166, iss. 1. P. 61–72. doi: 10.1111/j.1469-8137.2004.01309.x.
- Fournier M., Dlouhá J., Jaouen G., Almeras T. Integrative biomechanics for tree ecology: beyond wood density and strength // Journal of Experimental Botany. 2013. Vol. 64, iss. 15. P. 4793–4815. doi: 10.1093/jxb/ert279.
- Корниенко В.О. Влияние экологических факторов на физико-механические свойства, морфометрию и аллометрию древесных растений урбоэкосистем (на примере города Донецка): дис. … канд. биол. наук: 1.5.15. Ростов-на-Дону, 2022. 166 с.
- Корниенко В.О. Биомеханика ствола Robinia pseudoacacia L. в онтогенезе // Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. 2017. № 4. С. 48–50.
- Tateno M. Increase in lodging safety factor on thigmomorphogenetically dwarfed shoots of mulberry tree // Physiologia Plantarum. 1991. Vol. 81, iss. 2. P. 239–243. doi: 10.1111/j.1399-3054.1991.tb02136.x.
- Niklas K.J. Maximum plant height and the biophysical factors that limit it // Tree Physiology. 2007. Vol. 27, iss. 3. P. 433–440. doi: 10.1093/treephys/27.3.433.
- Banin L., Feldpausch T.R., Phillips O.L., Baker T.R., Lloyd J., Affum-Baffoe K., Arets E.J.M.M., Berry N.J., Bradford M., Brienen R.J.W., Davies S., Drescher M., Higuchi N., Hilbert D.W., Hladik A., Iida Y., Abu Salim K., Kassim A.R., King D.A., Lopez-Gonzalez G., Metcalfe D., Nilus R., Peh K.S.-H., Reitsma J.M., Sonké B., Taedoumg H., Tan S., White L., Wöll H., Lewis S.L. What controls tropical forest architecture? Testing environmental, structural and floristic drivers // Global Ecology and Biogeography. 2012. Vol. 21, iss. 12. P. 1179–1190. doi: 10.1111/j.1466-8238.2012.00778.x.
- Watt M.S., Moore J.R., Facon J.P., Downes G.M., Clinton P.W., Coker G.W.R., Davis M.R., Simcock R., Parfitt R.L., Dando J., Mason E., Bown H. Modelling environmental variation in Young’s modulus for Pinus radiata and implications for determination of critical buckling height // Annals of Botany. 2006. Vol. 98, iss. 4. P. 765–775. doi: 10.1093/aob/mcl161.
- Lachenbruch B., Moore J.R., Evans R. Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence // Size- age-related changes in tree structure function. 2011. Vol. 4. P. 121–164. doi: 10.1007/978-94-007-1242-3_5.
- Zhang S.-B., Slik J.W.F., Zhang J.-L., Cao K.-F. Spatial patterns of wood traits in China are controlled by phylogeny and the environment // Global Ecology and Biogeography. 2011. Vol. 20, iss. 2. P. 241–250. doi: 10.1111/j.1466-8238.2010.00582.x.
- Корниенко В.О., Калаев В.Н., Елизаров А.О. Влияние температуры на биомеханические свойства древесных растений в условиях закрытого и открытого грунта // Сибирский лесной журнал. 2018. № 6. С. 91–102. doi: 10.15372/sjfs20180608.
- Корниенко В.О., Калаев В.Н. Механическая устойчивость можжевельника виргинского в условиях степной зоны Восточно-Европейской равнины // Лесоведение. 2024. № 1. С. 70–78. doi: 10.31857/s0024114824010084.
- Корниенко В.О., Калаев В.Н. Жизнеспособность дуба черешчатого в условиях города Донецка // Сибирский лесной журнал. 2024. № 4. С. 95–106. doi: 10.15372/sjfs20240409.
- Остапко В.М., Шпилевая Н.В. Формирование натурной модели плакорной дубравы в Донецком ботаническом саду НАН Украины // Промышленная ботаника. 2008. № 8. С. 133–140.
- Алексеев В.А. Диагностика жизненного состояния деревьев и древостоев // Лесоведение. 1989. № 4. С. 51–57.
- Niklas K.J., Spatz H.-C. Worldwide correlations of mechanical properties and green wood density // American Journal of Botany. 2010. Vol. 97, iss. 10. P. 1587–1594. doi: 10.3732/ajb.1000150.
- Niklas K.J. Tree biomechanics with special reference to tropical trees // Tropical Tree Physiology. 2016. Vol. 6. P. 413–435. doi: 10.1007/978-3-319-27422-5_19.
- Зиньковская И.И., Сафонов А.И., Юшин Н.С., Неспирный В.Н., Гермонова Е.А. Ингредиентный фитомониторинг в Донбассе для идентификации новых геохимических аномалий // Экологическая химия. 2024. Т. 33, № 1. С. 19–32.
- Гермонова Е.А., Сафонов А.И. Детализация результатов фитомониторинга полемостресса в Донбассе с использованием ГИС-технологий // Проблемы экологии и охраны природы техногенного региона. 2024. № 1. С. 8–14.
- Сафонов А.И., Алемасова А.С., Зиньковская И.И., Вергель К.Н., Юшин Н.С., Кравцова А.В., Чалигава О. Морфогенетические аномалии бриобионтов в условиях геохимически контрастной среды Донбасса // Геохимия. 2023. Т. 68, № 10. С. 1032–1044. doi: 10.31857/s0016752523100114.
- Корниенко В.О., Калаев В.Н. Влияние природно-климатических факторов на механическую устойчивость и аварийность деревьев березы повислой в г. Донецке // Лесоведение. 2022. № 3. С. 321–334.
Supplementary files
