Применение метода фрактального анализа для биоиндикационной оценки состояния окружающей среды

Обложка

Цитировать

Полный текст

Аннотация

В данной статье проанализированы существующие на данный момент биоиндикационные методы исследования антропогенного загрязнения окружающей среды и рассмотрены особенности и область их применения. Особое внимание из данной группы методов уделено лихеноиндикации и оценке степени выраженности флуктуирующей асимметрии листовой пластинки и её изрезанности, т.к. они основаны на изучении геометрических характеристик структуры биологических объектов с помощью математической обработки данных с использованием специальных компьютерных программ. Показана возможность и перспективность применения метода измерения фрактальной размерности для качественной и количественной оценки загрязнения окружающей среды. Представленные в работе данные показывают, что учёт фрактальной природы в биологических системах позволяет обнаружить и исследовать принципиально новый круг явлений в биологии. Адекватность этого метода поставленным целям и задачам обеспечивается соответствующим математическим аппаратом. В рамках этого подхода оказывается возможным разработка и использование новых перспективных мониторинговых методов. В заключительной части работы предложена новая концепция биоиндикации, основанная на синтезе как классических, так и инновационных подходов к изучению и оценке качества окружающей среды в условиях техногенного загрязнения.

Об авторах

Сергей Львович Молчатский

Самарский государственный социально-педагогический университет

Email: rvsn3213@mail.ru

Кандидат физико-математических наук, доцент кафедры химии, географии и методики их преподавания

Россия, 443090, Самара, ул. Антонова-Овсеенко, д. 26

Иван Викторович Казанцев

Самарский государственный социально-педагогический университет

Email: kazantsev.ivan@pgsga.ru

Кандидат биологических наук, декан естественно-географического факультета, доцент кафедры химии, географии и методики их преподавания

Россия, 443090, Самара, ул. Антонова-Овсеенко, д. 26

Татьяна Борисовна Матвеева

Самарский государственный социально-педагогический университет

Автор, ответственный за переписку.
Email: matabor.7@yandex.ru

кандидат биологических наук, доцент кафедры биологии, экологии и методики обучения

Россия, 443090, Самара, ул. Антонова-Овсеенко, д. 26

Список литературы

  1. Груздев В.С. Биоиндикация состояния окружающей среды. М.: Изд-во ГУЗ, 2008. 142 с.
  2. Биологический контроль окружающей среды, биоиндикация и биотестирование / под ред. О.П. Мелеховой и Е.И. Егоровой. М.: Издательский центр «Академия», 2007. 288 с.
  3. Заболотских В.В., Васильев А.В. Мониторинг токсического воздействия на окружающую среду с использованием методов биоиндикации и биотестирования. Самара: СНЦ РАН, 2012. 232 с.
  4. Рассадина Е.В. Биоиндикация и ее место в системе мониторинга окружающей среды // Вестник Ульяновской государственной сельскохозяйственной академии. 2007. № 2(5). С. 48-53.
  5. Выходцева И.С., Рыхлова Т.А. Биоиндикация как метод оценки окружающей среды: актуальность и перспективы исследования // Вестник ландшафтной архитектуры. 2015. № 6. С. 44-47.
  6. Филиппов Е.С., Иванисова Н.В., Куринская Л.В. О биоиндикации транспортно-селитебных ландшафтов методом флуктуирующей асимметрии // Известия высших учебных заведений. Северо-Кавказский регион. Серия: Естественные науки. 2014. № 6(184). С. 68-72.
  7. Майджи О.В., Буланкина Е.Г. Исследование качества окружающей среды методом флуктуирующей асимметрии // Вестник Российского государственного аграрного заочного университета. 2012. № 13. С. 33-38.
  8. Гуртяк А.А. Экологическая оценка урбанизированных территорий с применением коэффициента флуктуирующей асимметрии: автореф. дис. … канд. биол. наук. Тюмень, 2013. 16 с.
  9. Попова Е.И. Применение коэффициента флуктуирующей асимметрии для экологической оценки антропогенной нагрузки // В мире научных открытий. 2013. № 11(47). С. 305-314.
  10. Трубина Л.К., Храмова Е.П., Луговская А.Ю. Оценка качества окружающей среды урбанизированной территории по величине флуктуирующей асимметрии листа // Интерэкспо Гео-Сибирь. 2013. Т. 4. № 2. С. 185-188.
  11. Кулябина Е.Ю. Региональные особенности лихеноиндикационного мониторинга качества атмосферного воздуха на примере урбанизированных и особо охраняемых территорий нижегородской области: автореф. дис. … канд. биол. наук. Нижний Новгород, 2003. 26 с.
  12. Рутман В.В., Резник Е.Н. Применение фрактального анализа и изучения цветометрических характеристик в лихеноиндикации // Экология родного края: проблемы и пути решения: сборник материалов Всероссийской научно-практической конференции с международным участием. Киров, 2016. С. 328-331.
  13. Миннуллина Г.Р. Совершенствование методов лихеноиндикации для оценки качества атмосферного воздуха урбанизированной территории: автореф. дис. … канд. биол. наук. Уфа, 2006. 21 с.
  14. Giordani P., Brunialti G., Alleteo D. Effects of atmospheric pollution on lichen biodiversity (LB) in a mediterranean region (Liguria, northwest Italy) // Environmental Pollution. 2002. Т. 118. № 1. P. 53-64.
  15. Бязров Л.Г. Лишайники в экологическом мониторинге. М.: Институт проблем экологии и эволюции им. А.Н. Северцова РАН, 2002. 336 с.
  16. Коротченко И.С. Флуктуирующая асимметрия листьев тополя как тест-система в условиях автотранспортного загрязнения // Международный журнал экспериментального образования. 2014. № 11-2. С. 56-57.
  17. Гуртяк А.А., Углев В.В. Оценка состояния среды городской территории с использованием березы повислой в качестве биоиндикатора // Известия Томского политехнического университета. Инжиниринг георесурсов. 2010. Т. 317. № 1. С. 200-204.
  18. Федорова Т.А. Флуктуирующая асимметрия листа липы мелколистной (Tilia cordata Mill.) как биоиндикационный параметр оценки качества среды // Вестник Курганского государственного университета. Серия: Естественные науки. 2013. № 3(30). С. 41-43.
  19. Бабушкина Е.А., Белокопытова Л.В., Костякова Т.В. Оценка флуктуирующей асимметрии листьев нескольких видов древесных растений как индикатора состояния окружающей среды // В мире научных открытий. 2013. № 7.3(43). С. 11-29.
  20. Коротченко И.С. Влияние теплоэнергетического комплекса г. Красноярска на величину флуктуирующей асимметрии листовой пластинки тополя бальзамического // Вестник Красноярского государственного аграрного университета. 2015. № 8. С. 15-20.
  21. Гелашвили Д.Б., Чупрунов Е.В., Иудин Д.И. Структурные и биоиндикационные аспекты флуктуирующей асимметрии билатерально-симметричных организмов // Журнал общей биологии. 2004. Т. 65. № 5. С. 433-441.
  22. Bruteig I.E. The epiphytic lichen Hypogymnia physodes as a biomonitor of atmospheric nitrogen and sulphur deposition in Norway // Environmental Monitoring and Assessment. 1993. № 26. P. 27-47.
  23. Слонов Т.Л. Лихеноиндикация загрязненности окружающей среды // Известия высших учебных заведений. Северо-Кавказский регион. Серия: Естественные науки. 2010. № 2. С. 111-115.
  24. Сафранкова Е.А. Комплексная лихеноиндикация общего состояния атмосферы урбоэкосистем: автореф. дис. … канд. биол. наук. Брянск, 2014. 23 с.
  25. Лыгин С.А., Ваниева А.С. Оценка загрязнения воздуха методом лихеноиндикации // Естественные и математические науки в современном мире. 2014. № 18. С. 187-191.
  26. Анищенко Л.Н., Сковородникова Н.А., Борздыко Е.В. Химическая лихеноиндикация как основа биомониторинга воздуха в антропогенных экосистемах // Фундаментальные исследования. 2015. № 2-10. С. 2144-2148.
  27. Jovan S., McCune B. Air-quality bioindication in the greater Central Valley of California, with epiphytic macrolichen communities // Ecological Applications. 2005. № 15. P. 1712-1726.
  28. Мандельброт Б. Фрактальная геометрия природы. М.: Ижевский институт компьютерных исследований, 2002. 856 с.
  29. Weibel E.R. Design of biological organisms and fractal geometry // Fractal in biology and medicine. Basel: Birkhäuser, 1994. P. 68-85.
  30. Смирнов Б.М. Физика фрактальных кластеров. М.: Наука, 1991. 134 с.
  31. Федер Е. Фракталы. М.: Мир, 1991. 260 с.
  32. Гелашвили Д.Б., Иудин Д.И., Розенберг Г.С., Якимов В.Н., Солнцев Л.А. Фракталы и мультифракталы в биоэкологи. Н. Новгород: Изд-во Нижегород. госун-та, 2013. 370 с.
  33. Гелашвили Д.Б., Иудин Д.И., Якимов В.Н., Солнцев Л.А., Снегирева М.С., Варичев А.Н., Розенберг Г.С. Фрактальные аспекты популяционной экологии // Вестник Удмуртского университета. Серия Биология. Науки о Земле. 2009. № 6-1. С. 15-22.
  34. Молчатский С.Л. Фрактальная организация и самоорганизация нейронных структур мозга: монография. Самара: ПГСГА, 2015. 133 с.
  35. Weibel E.R. Fractal geometry - a design principle for living organisms // Amer. J. Physiol. 1991. V. 261. № 6. P. 361-369.
  36. Nonnenmacher F., Losa G.A., Weibel E.R. Fractals in biology and medicine: Basel: Birkhäuser Verlag, 1994. 421 p.
  37. Исаева В.В., Каретин Ю.А., Чернышев А.В., Шкуратов Д.Ю. Фракталы и хаос в биологическом морфогенезе: монография. Владивосток: ИБМ ДВО РАН, 2004. 128 с.
  38. Захаров В.М. Здоровье среды: методика оценки. М.: Центр экол. политики России, 2000. 68 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рисунок 1 – Сравнение листа берёзы (а) с геометрическим объектом (б), смоделированным на компьютере

3. Рисунок 2 – Сравнение лишайника Physcia stellaris (а) с дендритным фрактальным кластером (б), смоделированным на компьютере [13]

Скачать (15KB)

© Молчатский С.Л., Казанцев И.В., Матвеева Т.Б., 2016

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».