The influence of carbon steel chemical composition on the biochemical activity of sessile sulfate-reducing bacteria
- Authors: Nesterova E.V.1, Verevkin A.G.2, Prokhorova N.V.1
-
Affiliations:
- Samara National Research University
- Research and Production Center «Samara»
- Issue: Vol 10, No 4 (2021)
- Pages: 87-92
- Section: General Biology
- URL: https://ogarev-online.ru/2309-4370/article/view/104900
- DOI: https://doi.org/10.17816/snv2021104113
- ID: 104900
Cite item
Full Text
Abstract
The technogenic failure caused by biological corrosion of pipelines and other oilfield equipment is an urgent problem for all oil-producing countries of the world. It has been established that many types of corrosion are initiated by the development of sulfate-reducing bacteria on the inner pipe surfaces. This paper presents the results of model laboratory experiments aimed at assessing the effect of the chemical composition of pipeline steel on the number and biochemical activity of sulfate-reducing bacteria development on its surface. Three chromium-containing corrosion-resistant steels were selected for the experiment, steel samples alloyed with 1% manganese were used as control samples. The bacteria for model experiments, mostly belonging to the genus Desulfovibrio, were taken from the inner surface of the damaged pipe after exploitation at an oil field in the Samara Region. In model experiments a reliable influence of the chemical composition of pipe steel on the quantitative characteristics and biochemical activity of bacteria developing on its surface was established. The biochemical activity of sulfate-reducing bacteria, determined by the stimulation of hydrogen sulfide formation and a change in dehydrogenase activity, significantly depended on the chromium content. An increase in the chromium concentration in the tested steel samples by up to 5% reduced the number of sulfate-reducing bacteria and their biochemical activity. The experiments allow us only to make a conclusion about the influence of the chemical composition of pipe steels on the number and biochemical activity of sulfate-reducing bacteria, but do not reveal its resistance to bacterial corrosion.
Full Text
##article.viewOnOriginalSite##About the authors
Ekaterina Vyacheslavovna Nesterova
Samara National Research University
Email: nevanest@yandex.ru
postgraduate student of Ecology, Botany and Nature Protection Department
Russian Federation, SamaraAleksandr Grigorievich Verevkin
Research and Production Center «Samara»
Email: verevkin@npcsamara.ru
candidate of chemical sciences, chief development officer
Russian Federation, SamaraNataliya Vladimirovna Prokhorova
Samara National Research University
Author for correspondence.
Email: natali.prokhorova.55@mail.ru
doctor of biological sciences, professor of Ecology, Botany and Nature Protection Department
Russian Federation, SamaraReferences
- Подавалов Ю.А. Экология нефтегазового производства. М.: Инфра-Инженерия, 2010. 416 с.
- Ефимов А.А., Гусев Б.А., Пыхтеев О.Ю., Мартынов В.В., Оренкова И.Н., Мирошниченко И.В., Бахир С.Ю., Емелин С.И. Локальная коррозия углеродистых сталей нефтепромыслового оборудования // Защита металлов. 1995. № 6 (31). С. 604–608.
- Денисова Т.В. Разработка стали повышенной прочности и коррозионной стойкости для производства нефтегазопроводных труб: дис. … канд. тех. наук. Пенза, 2013. 128 с.
- Притула В.В. Коррозионная ситуация на газонефтепроводах России и их промышленная безопасность // Трубопроводный транспорт. Теория и практика. 2015. № 2 (48). С. 6–10.
- Карначук О.В. Влияние шестивалентного хрома на образование сероводорода сульфатвосстанавливающими бактериями // Микробиология. 1995. № 3 (64). С. 315–319.
- Okabe S., Ito T., Satoh H. Sulfate-reducing bacterial community structure and their contribution to carbon mineralization in a wastewater biofilm growing under microaerophulic conditions // Applied Microbiology and Biotechnology. 2003. Vol. 63. P. 322–334. doi: 10.1007/s00253-003-1395-3.
- Walsh D., Pope D., Danford M., Huff T. The effect of microstructure on microbiologically influenced corrosion // JOM. 1993. Vol. 45. P. 22–30. doi: 10.1007/BF03222429.
- Walsh D. The implication of thermomechanical processing for microbiologically influenced corrosion // Corrosion. 1999. Paper № 188. P. 91–104.
- Geesey G.G., Gillis R.J., Avci R., Daly D., Hamilton M., Shope P., Harkin G. The influence of surface features on bacterial colonization and subsequent substratum chemical changes of 316L stainless steel // Corrosion Science. 1996. Vol. 38, iss. 1. P. 73–95. doi: 10.1016/0010-938x(96)00105-9.
- Antony P.J., Singh Raman R.K., Raman R., Kumar P. Role of microstructure on corrosion of duplex stainless steel in presence of bacterial activity // Corrosion Science. 2010. Vol. 52, iss. 4. P. 1404–1412. doi: 10.1016/j.corsci.2009.12.003.
- Борисенкова Е.А. Разработка и применение методов исследования влияния состава и структуры материалов стальных труб на коррозионную стойкость в нефтяных средах: дис. … канд. тех. наук. Самара, 2016. 198 с.
- Postgate J.R. The sulphate-reducing bacteria. Cambridge: Cambridge University Press, 1984. 224 p.
- Назина Т.Н., Розанова Е.П., Беляев С.С., Иванов М.В. Химические и микробиологические методы исследования пластовых жидкостей и кернов нефтяных месторождений. Пущино: НЦБИ АН СССР, 1988. 25 с.
- Определитель бактерий Берджи. В 2-х т. / под ред. Дж. Хоулта, Н. Крига, П. Снита, Дж. Стейли, С. Уилльямса. М.: Мир, 1997. 800 с.
- Уикли Б. Электронная микроскопия для начинающих. М.: Мир, 1975. 336 с.
- NACE Standard TM0194-2004. Standard Test Method. Field Monitoring of Bacterial Growth in Oil and Gas Systems. Houston, Texas: NACE International, 2004. 17 p.
- Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent // The Journal of Biological Chemistry. 1951. Vol. 193, iss. 1. P. 265–275.
- Cline J.D. Spectrophotometric determination of hydrogen sulfide in natural waters // Limnology and Oceanography. 1969. Vol. 14, iss. 3. P. 454–458.
- Романенко В.И., Кузнецов С.И. Экология микроорганизмов пресных водоемов: лабораторное руководство. Л.: Наука, 1974. 194 с.
- Costerton J.W., Lewandowski Z. Microbial biofilm // Annual Review of Microbiology. 1995. Vol. 49. P. 711–745.
- Заварзин Г.А., Колотилова Н.А. Введение в природоведческую микробиологию. М.: Книжный дом Университет, 2001. 226 с.
- Jefferson K.K. What drives bacteria to produce a biofilm? // FEMS Microbiology Letters. 2004. Vol. 236. P. 163–173.
- Ringas С., Robinson F.P.A. Corrosion of stainless steel by sulfate-reducing bacteria – electrochemical technics // Corrosion. 1987. Vol. 44, iss. 6. P. 386–396.
- Videla H.A., Herrera L.K. Microbiologically influenced corrosion: looking to the future // International Microbiology. 2005. Vol. 8, iss. 3. P. 169–180.
- Зайцева О.В., Кленова Н.А., Ширнина Е.В. Влияние химического состава стали на развитие биопленки сульфатвосстанавливающих бактерий // Экологический сборник: тр. молодых ученых Поволжья / под ред. проф. С.В. Саксонова. Тольятти: ИЭВБ РАН, 2007. С. 45–50.
- Lee W., Characklis W.G. Corrosion of mild steel under anaerobic biofilm // Corrosion. 1993. Vol. 49, iss. 3. P. 186–198.
Supplementary files
