ИСПОЛЬЗОВАНИЕ КВАНТОВО-ХИМИЧЕСКИХ ПАРАМЕТРОВ ДЛЯ ПРОГНОЗИРОВАНИЯ АНТИРАДИКАЛЬНОЙ (НО•) АКТИВНОСТИ РОДСТВЕННЫХ СТРУКТУР, СОДЕРЖАЩИХ ЦИННАМОИЛЬНЫЙ ФРАГМЕНТ. IV. ВЗАИМОСВЯЗЬ СТРУКТУРА-АКТИВНОСТЬ МЕЖДУ ИНДЕКСАМИ НЕНАСЫЩЕННОСТИ И ПРОИЗВОДНЫМИ ФЛАВОНА С ФЛОРОГЛЮЦИНОВЫМ КОЛЬЦОМ «А»

  • Авторы: Оганесян Э.Т.1, Шатохин С.С.1
  • Учреждения:
    1. Пятигорский медико-фармацевтический институт - филиал федерального государственного бюджетного образовательного учреждения высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации
  • Выпуск: Том 9, № 2 (2021)
  • Страницы: 161-169
  • Раздел: Статьи
  • URL: https://ogarev-online.ru/2307-9266/article/view/111684
  • DOI: https://doi.org/10.19163/2307-9266-2021-9-2-161-169
  • ID: 111684

Цитировать

Полный текст

Аннотация

Изучены квантово-химические параметры 52 производных, относящихся к флаванонам, флаванонолам, флавонам и флавонолам с флороглюциновым типом кольца «А», и содержащими электронодонорные заместители в кольце «В».Цель работы. Анализ динамики изменения электронной плотности, связевых чисел, индексов свободной валентности и ненасыщенности на атомах углерода С-7→С-8 виниленовой группы главной цепи сопряжения во взаимосвязи с положением и числом заместителей в кольце «В» и видом фармакологической активности.Материалы и методы. Квантово-химические параметры анализируемых 4-х групп соединений рассчитаны полуэмпирическим методом PM7 (программа WinMopac 2016) на рабочей станции с процессором IntelXeonE5-1620 3,5 ГГц, 20 Гб оперативной памяти.Результаты. При сопоставлении квантово-химических параметров анализируемых соединений установлено, что при формировании кратной связи С-7→С-8 индексы свободной валентности и ненасыщенности возрастают на обоих углеродных атомах виниленовой группы у флавонов и флавонолов по сравнению с соответствующими флаванонами и флаванонолами. Это объясняется тем, что величина связевых чисел Nµ на этих атомах, наоборот, уменьшается (Fµ= 4,732-Nµ). Переход от флаванона к флавону сопровождается формированием виниленовой группы С-7→С-8, в связи с чем оба атома из sp3- гибридизованного состояния переходят в sp2-состояние. Следствием такой трансформации является изменение значения электроотрицательности и увеличением индекса ненасыщенности атомов С-7 и С-8: С sp3=2,5; С sp2=2,8. Вместе с тем переход от флаванона к флавону приводит к образованию сопряженной системы с участием π-электронов ароматического ядра «В», атомов С-7, С-8 и карбонила что принято называть «главной цепью сопряжения». Указанные структурные изменения, а именно, переход от менее окисленного флаванона к более окисленному флавону способствует уменьшению электронной плотности на атомах С-7 и С-8, и увеличению суммарной ненасыщенности молекул в целом. Малликеновские заряды на С-7 всех групп соединений характеризуются положительным значением. Что касается атомов углерода фрагмента «В», то здесь выявлены следующие особенности: при наличии одного заместителя -ОН или -ОСН3 на атоме углерода, с которым связан заместитель, Малликеновский заряд - положительный; если в кольце «В» имеются два заместителя -ОН или -ОСН3,а также две -ОСН3 группы, то атомы углерода, связанные с указанными заместителями, тоже имеют положительный Малликеновский заряд; в случае тригидроксизамещенных у С-2’, С-3’ и С-4’ кольца «В» все три атома углерода характеризуются положительным Малликеновским зарядом; если в положениях С-2’, С-3’ и С-4’ находятся метоксигруппы, то положительный Малликеновский заряд сосредоточен только на атомах С-2’ и С-4’, а на С-3’ этот заряд имеет отрицательное значение.Заключение. Перечисленные выше данные о квантово-химических параметрах главной цепи сопряжения свидетельствуют о том, что переход атомов С-7 и С-8 в sp2- гибридное состояние приводит к понижению электронной плотности и уменьшению величин связевых чисел, при одновременном увеличении индексов ненасыщенности и свободной валентности на этих атомах. Таким образом, пусковой механизм антирадикальной активности, в первую очередь в отношении радикала НО•, определяется тем, что эта электрофильная по своим свойствам частица при первичной атаке присоединится по положению С-8.

Об авторах

Э. Т. Оганесян

Пятигорский медико-фармацевтический институт - филиал федерального государственного бюджетного образовательного учреждения высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Email: edwardov@mail.ru
357532, Россия, Пятигорск, пр. Калинина, 11

С. С. Шатохин

Пятигорский медико-фармацевтический институт - филиал федерального государственного бюджетного образовательного учреждения высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Email: Shatohin.stanislav95@yandex.ru
357532, Россия, Пятигорск, пр. Калинина, 11

Список литературы

  1. Ahmad A., Kaleem M., Ahmed Z., Shafiq H. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections-A review // Food Research International. - 2015. - Vol. 77. - P. 221-235. DOI: /10.1016/j.foodres.2015.06.021
  2. de Araújo F. F., de Paulo Farias D., Neri-Numa I.A., Pastore G.M. Polyphenols and their applications: An approach in food chemistry and innovation potential // Food Chemistry. - 2021. - Vol. 338. - 127535. doi: 10.1016/j.foodchem.2020.127535
  3. Lichota A., Gwozdzinski L., Gwozdzinski K. Therapeutic potential of natural compounds in inflammation and chronic venous insufficiency // European Journal of Medicinal Chemistry. - 2019. - Vol. 176. - P. 68-91. doi: 10.1016/j.ejmech.2019.04.075
  4. Loh Y. C., Chan S.Y., Tew W.Y., Oo C.W., Yam M.F. New flavonoid-based compound synthesis strategy for antihypertensive drug development // Life Sciences. - 2020. - Vol. 249. - 117512. doi: 10.1016/j.lfs.2020.117512
  5. Perez-Vizcaino F., Fraga C. G. Research trends in flavonoids and health // Archives of Biochemistry and Biophysics. - 2018. - Vol. 646. P. 107-112. doi: 10.1016/j.abb.2018.03.022
  6. Raffa D., Maggio B., Raimondi M.V., Plescia F., Dainone G. Recent discoveries of anticancer flavonoids // European Journal of Medicinal Chemistry. - 2017. - Vol. 142. - P. 213-228. doi: 10.1016/j.ejmech.2017.07.034
  7. Heim K.E., Tagliaferro A.R., Bobilya D.J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships // Journal of Nutritional Biochemistry. - 2002. - Vol. 13, No. 10. - P. 572-584. doi: 10.1016/S0955-2863(02)00208-5
  8. Mladěnka P., Zatloukalová L., Filipský T., Hrdina R. Cardiovascular effects of flavonoids are not caused only by direct antioxidant activity // Free Radical Biology & Medicine. - 2010. - Vol. 49, No. 6. - P. 963-975. doi: 10.1016/j.freeradbiomed.2010.06.010
  9. Procházková D., Boušová I., Wilhelmová N. Antioxidant and prooxidant properties of flavonoids // Fitoterapia. - 2011. - Vol. 82. - P. 513-523. doi: 10.1016/j.fitote.2011.01.018
  10. Agati G., Azzarello E., Pollastri S., Tattini M. Flavonoids as antioxidants in plants: Location and functional significance // Plant Science. - 2012. - Vol. 196. - P. 67-76. doi: 10.1016/j.plantsci.2012.07.014
  11. Филимонов Д.А., Дружиловский Д.С., Лагунин А.А., Глориозова Т.А., Рудик А.В., Дмитриев А.В., Погодин П.В., Поройков В.В. Компьютерное прогнозирование спектров биологической активности химических соединений: возможности и ограничения // Biomedical Chemistry: Research and Methods. - 2018. - Т. 1, №1. doi: 10.18097/bmcrm00004
  12. Husaine S.R., Cillard J., Cillard P Hydroxyl radical scavenging activity of flavonoids // Phytochemistry. - 1987. - Vol. 26, No.9. - 2489-2491.
  13. Агаджанян В.С., Оганесян Э.Т. Применение квантово-химических методов анализа для интерпретации антирадикальной активности в ряду гидроксипроизводных коричной кислоты // Хим.-фарм.журн. - 2008. - Т.42, №11. - C. 12-17. doi: 10.30906/0023-1134-2008-42-11-12-17
  14. Wu C., Liu Y., Yang Y., Zhang P., Zhong W., Wang Y., Wang Q., Xu Y., Li M., Li X., Zheng M., Chen L., Li H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods // Acta. Pharm. Sin. B. - 2020. - Vol.10, No.5. - P.766-788. doi: 10.1016/j.apsb.2020.02.008.
  15. Antonio A. D. S., Wiedemann L. S. M., Veiga-Junior V. F. Natural products’ role against COVID-19 // RSC Advances. - 2020. - Vol. 10, No.39. - P. 23379-23393. doi: 10.1039/D0RA03774E
  16. Russo M., Moccia S., Spagnuolo C., Tedesco I., Russo G.L. Roles of flavonoids against coronavirus infection // Chemico-Biological Interactions. - 2020. - Vol. 328. - 109211. doi: 10.1016/j.cbi.2020.109211
  17. Sestili P., Stocchi V. Repositioning Chromones for Early Anti-inflammatory Treatment of COVID-19 // Frontiers in Pharmacology. - 2020. - Vol. 11. - 854. doi: 10.3389/fphar.2020.00854
  18. Агаджанян В.С., Оганесян Э.Т., Абаев В.Т. Целенаправленный поиск соединения-лидера в ряду производных коричной кислоты, обладающих антирадикальной активностью // Хим.-фарм.журн. - 2010. - Т.44, №7. - C. 21-26. doi: 10.30906/0023-1134-2010-44-7-21-26
  19. Оганесян Э.Т., Шатохин С.С., Глушко А.А. Использование квантово-химических параметров для прогнозирования антирадикальной (НО∙) активности родственных структур, содержащих циннамоильный фрагмент. I. Производные коричной кислоты, халкона и флаванона // Фармация и фармакология. - 2019. - Т.7, №1. - С. 53-66. doi: 10.19163/2307-9266-2019-7-1-53-66.
  20. Akoglu H. User's guide to correlation coefficients // Turkish Journal of Emergency Medicine. - 2018. - Vol.18, No.3. - P.91-93. doi: 10.1016/j.tjem.2018.08.001

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Оганесян Э.Т., Шатохин С.С., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).