Enhancing Noise Immunity in a Voice Control System

Capa

Citar

Texto integral

Resumo

Introduction. In modern digital control systems, ensuring the reliability of ADCs is topical. Self-diagnosis algorithms are commonly employed to detect and address failures, thereby enhancing reliability. This research aims at developing a novel approach by harnessing the capabilities of a local fragmented control device (LFCD) to identify failures in the main measuring neuron (MMN) system, followed by the exclusion of the failed MMN from the neural network.

Materials and Methods. The study applied self-diagnosis algorithms to identify failed MMNs for two neural network structures: the "Internal Feedback Structure" and the "Redundant Link Structure." Graphical interpretations of the operation sequence are provided for cases of complete uncertainty, where the state of all neurons from the base group is unknown, and for cases of the unknown state of one neuron. The concept of the base group is introduced as the minimum number of neurons required for self-diagnosis.

Results and Conclusion. In the MatLab Simulink environment, we developed a model to compare neural network structures and self-diagnosis algorithms. We utilized this model to investigate the algorithm complexity and total time required for neural network analysis based on the number of tested neurons. Our findings demonstrated that for the "Internal Feedback Structure," the base group consists of 2m MMNs, where m represents the ADC resolution during self-diagnosis, while for the "Redundant Link Structure," it is 2m+1. The analysis highlighted that the "Redundant Link Structure" and selecting parameter m=3 represent the most optimal solution, offering shorter verification time and requiring less hardware resources while maintaining other characteristics.

Practical Significance. Research findings will enable subsequent self-diagnosis of control system elements and developing a diagnostic algorithm that ensures parallel checking in different areas of neural networks and the process of analog-to-digital conversion on the free part.

Texto integral

Acesso é fechado

Sobre autores

Alexander Palkov

JSC “Research Institute of Physical Measurements”; Penza State University

Autor responsável pela correspondência
Email: alekspalkov@gmail.com
Código SPIN: 3501-8949

Engineer, Master's student

Rússia, 8/10, Volodarskogo str., Penza,440026; 40, Krasnaja str., Penza,440026

Valeriy Kozlov

National Research University “Moscow Power Engineering Institute”

Email: alekspalkov@gmail.com
Código SPIN: 3605-4537

Candidate of Technical Sciences, Associate Professor, Associate Professor at the Department of Information and Measuring Technology and Metrology

Rússia, 14, Krasnokazarmennaja str., Moscow,111250

Andrey Bodin

National Research University “Moscow Power Engineering Institute”

Email: alekspalkov@gmail.com
Código SPIN: 3307-4732

PhD student

Rússia, 14, Krasnokazarmennaja str., Moscow,111250

Mikhail Kramm

National Research University “Moscow Power Engineering Institute”

Email: alekspalkov@gmail.com
ORCID ID: 0000-0002-8360-9879
Código SPIN: 3184-9707

Doctor of Engineering Sciences, Associate Professor, Professor at the Department of Radio Engineering Fundamentals

Rússia, 14, Krasnokazarmennaja str., Moscow,111250

Oleg Bodin

Penza State Technological University

Email: alekspalkov@gmail.com
Rússia, 1a/11, Baidukova proezd/Gagarina str., Penza,440039

Bibliografia

  1. Dyrmovsky DV, Matveev YuN, Balykina LA. Modern market of speech technologies. Control Engineering Russia. 2015;(1);18-24. (In Russ.).
  2. Sagatsyan MV, Kulikov AV, Tupitsin GS. Development and research into neuronet algorithm of speaker-independent speech recognition. Vestnik of Volga State University of Technology. Series “Radio Engineering and Infocommunication Systems”. 2014;(1);68-75. (In Russ.).
  3. Bodin ON, Bezborodova OE, Spirkin AN. Bionic control systems for mobile robotic complexes. Penza: Penza State University; 2022. 236 p. (In Russ.).
  4. Kozlov VV, Fokina EA, Trofimov AA. Pre-processing of signal in recognition of voice commands by method of improved complete multiple decomposition to empirical modes. Measurements. Monitoring. Management. Control. 2022;(3);56-61. (In Russ.). doi: 10.21685/2307-5538-2022-3-6
  5. Kamenskaya EN. Noise protection. Rostov-on-Don: Southern Federal University; 2023. 145 p. (In Russ.).
  6. Ivanova-Lukyanova GN. Culture of oral speech: intonation, pausing, logical stress, tempo, rhythm. Moscow: Flinta; 2022. 200 p. (In Russ.).
  7. Grishina SYu, Kurtsev GM, Putechev AD. The use of the software for calculation of the expected noise. Noise Theory and Practice. 2016;(2);35-41. (In Russ.).
  8. Kibrik AA, Podleskaya VI. The problem of segmentation of oral discourse and the cognitive system of the speaker. Kognitivnye issledovanija. Moscow: Institute of Psychology RAS,2006;(1):138–158. (In Russ.).
  9. Dyakonov VP. MATLAB 6/6.1/6.5+SIMULINK 4/5 in mathematics and modeling: Complete user guide. Moscow: SOLON-Press; 2003. 576 p. (In Russ.).
  10. Sklyar B. Digital communication. Theoretical foundations and practical application. Moscow: Williams Publishing House; 2017. 1100 p. (In Russ.).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The block diagram of the voice control system (VCS)

Baixar (5KB)
3. Fig. 2. Speech signal processing algorithm in the VCS

Baixar (140KB)
4. Fig. 3. Segmented audio signal

Baixar (79KB)
5. Fig. 4. Program listing for creating "pause" audio files in the Matlab environment

Baixar (53KB)
6. Fig. 5. Scheme for summing audio signals

Baixar (80KB)
7. Fig. 6. Original speech command

Baixar (470KB)
8. Fig. 7. Manually segmented pauses between words

Baixar (347KB)
9. Fig. 8. «Pure» speech command

Baixar (421KB)
10. Fig. 9. Spectrogram of the initial speech command (amplitude, frequency, time)

Baixar (157KB)
11. Fig. 10. Spectrogram of the initial speech command (amplitude, time)

Baixar (179KB)
12. Fig. 11. Spectrogram of pause audio signal  (amplitude, frequency, time)

Baixar (171KB)
13. Fig. 12.  Spectrogram of pause audio signal (amplitude, time)o signal of pauses (amplitude, time)

Baixar (133KB)
14. Fig. 13. Spectrogram of a «pure» speech command (amplitude, frequency, time)

Baixar (98KB)
15. Fig. 14. Spectrogram of a «pure» speech command (amplitude, time)

Baixar (177KB)
16. Fig. 15. Program listing for computing SNR applicable to the original and "pure" audio signals

Baixar (58KB)
17. Fig. 16. Automatic audio signal filtering scheme in Simulink

Baixar (65KB)
18. Fig. 17. Filtered «pure» speech command

Baixar (80KB)
19. Fig. 18. Evaluation of the result of automatic filtering of the audio signal

Baixar (94KB)
20. Fig. 19. Spectrogram of a «pure» filtered speech command (amplitude, frequency, time)

Baixar (59KB)
21. Fig. 20. Spectrogram of a «pure» filtered speech command (amplitude, time)

Baixar (59KB)
22. Fig. 21. Program listing for calculating SNR applicable to filtered "pure" audio signals

Baixar (31KB)

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).