Determination of the explosion delay time during laser initiation of energy-intensive compounds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A method for recording light flashes during the initiation of an explosion in energy-intensive materials by a laser monopulse is proposed. Two methods of measuring the explosion delay are implemented. In the first, the photocell is installed on the back side of the test sample and luminocity is recorded in the infrared range (> 700 nm). On the register diagram, two separate peaks are clearly observed corresponding to the moment of generation (1064 nm) and the expansion of the explosion products. In the second, two photocells are used: the first one is located similarly and the second one is located on the side, in front of the sample. Luminocity is recorded in the range of 400–440 nm. The direct and scattered (explosion products) light fluxes emitted by the discharge of a pulsed pump lamp are measured. The delay is determined by the time shift of the signals of both photocells. The delay times for the selected chemical compound were 10 and 20 µs for monopulses with an energy of ∼50 and ∼ 60 mJ, respectively. The time of expansion of the explosion products is estimated in the interval from the beginning to the peak of the photocurrent. The specified value was ∼ 35 µs and did not depend on the initiation energy.

About the authors

Alexander F. Alibaev

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Author for correspondence.
Email: alibaevalexander@yandex.ru

Research Engineer

Russian Federation, 4, Kosygin St., Moscow, 119991

Igor G. Assovsky

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: assov@chph.ras.ru

доктор физико-математических наук, заведующий лабораторией

Russian Federation, 4, Kosygin St., Moscow, 119991

Daniil B. Dmitrienko

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: daniildinoz@yandex.ru

Research Engineer

Russian Federation, 4, Kosygin St., Moscow, 119991

Gennady P. Kuznetsov

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: kuznetsov-47@bk.ru

Junior Researcher

Russian Federation, 4, Kosygin St., Moscow, 119991

Georgy V. Melik-Gaykazov

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: marsh@chph.ras.ru

Candidate of Science in Physics and Mathematics, Senior Engineer

Russian Federation, 4, Kosygin St., Moscow, 119991

References

  1. Karabanov, Y. F., and V. K. Bobolev. 1981. Zazhiganie initsiiruyushchikh vzryvchatykh veshchestv impul’som lazernogo izlucheniya [Experimental study of laser pulse ignition of explosives. Dokl. Akad. Nauk SSSR 256(5):1152–1155.
  2. Aleksandrov, E. I., and V. P. Tsipilev.1984. Effect of the pulse length on the sensitivity of lead azide to laser radiation. Combust. Explo. Shock Waves 20(6):690– 694.
  3. Korepanov, V. I., V. M. Lisitsyn, V. I. Oleshko, and V. P. Tsipilev. 2006. Kinetics and mechanism of explosive decomposition of heavy metal azides. Combust. Explo. Shock Waves 42(1):94–106.
  4. Lisitsyn, V. M., and V. P. Tsipilev, G. Damamme, and D. Malis. 2011. Effect of the laser radiation wavelength on the energy threshold of initiation of heavy metal azides. Combust. Explo. Shock Waves 47(5):591–600.
  5. Kriger, V. G., A.V. Kalenskii, and A. A. Zvekov. 2010. Determining the onset of mechanical failure of silver azide crystals initiated by a laser pulse. Combust. Explo. Shock Waves 46(1):60–63.
  6. Kalenskii, A. V., A. A. Zvekov, M. V. Anan’eva, V. G. Kriger, V. P. Tsipilev, and A. V. Razin. 2015. Spatial and temporal characteristics of detonation wave propagation in silver azide. Combust. Explo. Shock Waves 51(3):353–357.
  7. Aduev, B. P., D. R. Nurmukhametov, V. P. Tsipilev, and R. I. Furega. 2013. Effect of ultrafine Al–C particle additives on the PETN sensitivity to radiation exposure. Combust. Explo. Shock Waves 49(2):215–218.
  8. Aduev, B. P., D. R. Nurmukhametov, N. V. Nelyubina, R. Yu. Kovalev, A. P. Nikitin, A. N. Zaostrovskii, and Z. R. Ismagilov. 2016. Laser initiation of compositions based on PETN with submicron coal particles. Combust. Explo. Shock Waves 52(5):593–599.
  9. Kondilenko, I. I., P. A. Korotkov, and A. I. Khizhnyak. 1984. Fizika lazerov [Physics of lasers]. Visha Shkola. 232 p.
  10. Rokhlin, G. N. 1991. Razryadnye istochniki sveta [Discharge light sources]. 2nd ed. Moscow: Energoatomizdat. 720 p.
  11. Volkenstein, M. V. 1951. Molekulyarnaya optika [Molecular optics]. Moscow–Leningrad: GITTL. 744 p.
  12. Ivanov, A. P. 1969. Optika rasseivayushchikh sred [Optics of scattering media]. Science and technology. 592 p.
  13. Chechik, N. O., S.M. Feinstein, and T. M. Lifshitz. 1957. Elektronnye umnozhiteli [Electronic tubes]. Gostekhizdat. 576 p.
  14. Ilyushin, M. A., I. V. Tselinskii, and A. V. Cerny. 1997. Svetochuvstvitel’nye vzryvchatye veshchestva i sostavy i ikh initsiirovanie lazernym monoimpul’som [Light-sensitive explosive substances and preparations and initiating laser monopulse]. Ross. Khim. Zh. 41(4):81–88.
  15. Joas, M., T. M. Klapotke, J. Stierstosrfer, and N. Szimhardt. 2013. Synthesis and characterization of various photosensitive copper(II) complexes with 5-(1methylhydrazinyl)-1H-tetrazole as ligand and perchlorate, nitrate, dinitramide, and chloride as anions. Chem. — Eur. J. 19(30):9995–10003.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).