The features of spontaneous condensation of boron oxide in plane and axisymmetric nozzles: numerical analysis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A model of spontaneous condensation of boron oxide vapors in chemically reacting gas mixtures based on the classical theory of nucleation and one-speed and one-temperature approximation for the equations of a two-phase mixture movement has been developed. The model takes into account the nucleation, condensation growth of droplets, their coagulation, and gas-phase chemical reactions. A numerical study of spontaneous condensation of boron oxide vapors in plane and axisymmetric nozzles has been performed. The condensation in flat nozzles with a small degree of expansion is shown to proceed according to a typical scenario: the formation of a condensation shock wave behind the nozzle throat and the condensation growth of droplets downstream after the jump. In the flat nozzles of similar geometry with the small expansion angle, the location of the condensation shock wave does not depend on the linear dimensions of the nozzle. An important feature of spontaneous condensation in nozzles with a small expansion angle is the equilibrium of vapor and condensate in the outlet section of the nozzle. Phase equilibrium is not achieved in nozzles with a high expansion angle. The higher the expansion angle of the nozzle supersonic part, the greater the deviation from equilibrium in nozzle.

About the authors

Alexander M. Savel’ev

P.I. Baranov Central Institute of Aviation Motors

Author for correspondence.
Email: amsavelev@ciam.ru

Candidate of Science in technology, head of sector

Russian Federation, Moscow

Denis I. Babushenko

P.I. Baranov Central Institute of Aviation Motors

Email: dibabushenko@ciam.ru

head of sector

Russian Federation, Moscow

Vera A. Savelieva

P.I. Baranov Central Institute of Aviation Motors

Email: vasaveleva@ciam.ru

Candidate of Science in biology, senior research scientist

Russian Federation, Moscow

References

  1. Grabis, J., D. Rasmane, A. Krumina, and A. Patmalnieks. 2012. Preparation of boron suboxide nanoparticles and their processing. Mater. Sci. 18:72–74.
  2. Tsierkezos, N. G., U. Ritter, Y. N. Thaha, and C. Downing. 2015. Application of multi-walled carbon nanotubes modified with boron oxide nanoparticles in electrochemistry. Ionics 21:3087–3095.
  3. Ramachandran, R., D. Jung, N. A. Bernier, J. K. Logan, M. A. Waddington, and A. M. Spokoyny. 2018. Sonochemical synthesis of small boron oxide nanoparticles. Inorg. Chem. 57:8037–8041.
  4. Berner, M. K., V. E. Zarko, and M. B. Talawar. 2013. Nanoparticles of energetic materials: Synthesis and properties (review). Combust. Explo. Shock Waves 49(6):625–647.
  5. Savel’ev, A. M., and A. M. Starik. 2017. An improved model of homogeneous nucleation for high supersaturation conditions: Aluminum vapor. Phys. Chem. Chem. Phys. 19:523–538.
  6. Suzdalev, I. P. 2006. Nanotekhnologiya, fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov [Nanotechnology, physical chemistry of nanoclusters, nanostructures, and nanomaterials]. Moscow: KomKniga. 592 p.
  7. Savel’ev, A. M., D. I. Babushenko, V. I. Kopchenov, and N. S. Titova. 2021. Numerical study of homogenous nucleation of boron oxide vapor in laval nozzles. Combust. Explo. Shock Waves 57(1):30–45.
  8. Gany, A. 2006. Comprehensive consideration of boron combustion in airbreathing propulsion. AIAA Paper No. 2006-4567.
  9. Haddad, A., B. Natan, and R. Arieli. 2011. The performance of a boron-loaded gel-fuel ramjet. Progress in propulsion physics. Eds. L. T. DeLuca, C. Bonnal, O. Haidn, and S. M. Frolov. EUCASS advances in aerospace sciences book ser. EDP Sciences — TORUS PRESS. 2:499–518.
  10. Balas, S., and B. Natan. 2016. Boron oxide condensation in a hydrocarbon–boron gel fuel ramjet. J. Propul. Power 32:967–974.
  11. Tower, L. K. 1961. Thermal relations for two-phase expansion with phase equilibrium and example for combustion products of boron-containing fuel. Lewis Flight Propulsion Laboratory. NACA RM E57C11.
  12. Kortsenshteyn, N. M., and A. K. Yastrebov. 2012. Interphase heat transfer during bulk condensation in the flow of vapor–gas mixture. Int. J. Heat Mass Tran. 55:1133–1140.
  13. Avetisyan, A. R., V. M. Alipchenkov, and L. I. Zaichik. 2002. Simulation of a flow of spontaneously condensing moist steam in laval nozzles. High Temp. 40(6):872–881.
  14. Frenkel’, Ya. I. Kineticheskaya teoriya zhidkostey [Kinetic theory of liquids]. Leningrad: Nauka, 1975. 592 p.
  15. Savel’ev, A. M., and A. M. Starik. 2001. Dynamics of sulfate aerosol formation in engine jets. Fluid Dyn. 1:95–103.
  16. Savel’ev, A. M. 2010. Obrazovanie ul’tradispersnykh zaryazhennykh i neytral’nykh aerozoley v elementakh protochnogo trakta i vykhlopnoy strue turboreaktivnogo dvigatelya [Formation of ultrafine charged and neutral aerosols in the elements of the flow path and exhaust jet of a turbojet engine]. Moscow. PhD Thesis. 180 p.
  17. Savel’ev, A. M., and A. M. Starik. 2009. On coagulation mechanisms of charged nanoparticles produced by combustion of hydrocarbon and metallized fuels. J. Exp. Theor. Phys. 108(2):326–340.
  18. Chase, M.W. 1998. NIST-JANAF Thermochemical Tables. 4th ed.
  19. Shpil’rain, E. E., K. A. Yakimovich, and A. F. Tsitsarkin. 1972. Investigation of the surface tension of liquid boron oxide to 2000 °C by the cylinder pulling method. High Temp. — High Press. 4:67–76.
  20. Shpil’rain, E. E., K. A. Yakimovich, and A. Tsitsarkin. 1974. Surface tension of liquid boric oxide at up to 2100° C. High Temp. 12:68–71.
  21. Fujino, S., H. Wang, and K. Morinaga. 2005. Surface tension of PbO–B2 O3 and Bi2 O3 –B2 O3 glass melts. J. Mater. Sci. 40:7–12.
  22. Shi, X., Q. Wang, X. Niu, C. Li, and K. Lu. 2006. An examination of surface tension of binary lithium borate melts as a function of composition and temperature. J. Am Ceram. Soc. 89:3222–3228.
  23. Boldarev, A. S., V. A. Gasilov, L. I. Zaichik, and O. G. Ol’khovskaya. 1998. Numerical modeling of quasi-one-dimensional and two-dimensional flows, of spontaneously condensing steam in transonic nozzles. High Temp. 36(1):131–137.
  24. Deich, M. E., and G. A. Filippov. 1968. Gazodinamika dvukhfaznykh sred [Gasdynamics of two-phase media]. Moscow: Energiya. 423 p.
  25. Tkalenko, R. A. 1972. Condensation of water vapor upon expansion in planar and axiosymmetric nozzles. Fluid Dyn. 7:1009–1012.
  26. Sternin, L. E. 1974. Osnovy gazodinamiki dvukhfaznykh techeniy v soplakh [Fundamentals of gas dynamics of two-phase currents in nozzles]. Moscow: Mashinostroenie. 212 p.
  27. Kortsenshtein, N. M., and E. V. Samuilov. 2005. Generation of aerosol plasma in the process of volume condensation in a cloud of surface explosion products. High Temp. 43(5):661–672.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».