Instabilities of supersonic combustion at plasma-based flameholding
- Authors: Elliott S.1, Leonov S.B.1
-
Affiliations:
- Institute for Flow Physics and Control, University of Notre Dame
- Issue: Vol 15, No 3 (2022)
- Pages: 18-27
- Section: Articles
- URL: https://ogarev-online.ru/2305-9117/article/view/286538
- DOI: https://doi.org/10.30826/CE22150302
- EDN: https://elibrary.ru/HBILOP
- ID: 286538
Cite item
Abstract
Two types of supersonic combustion instabilities identified in a reacting flow at direct injection of gaseous hydrocarbon fuel and quasi-direct-current (Q-DC) plasma assistance have been considered: a global instability triggered by a mechanism of flow–combustion–plasma coupling and a fast instability of a thermoacoustic nature. The experiments were performed at SBR-50 supersonic combustion facility at variable conditions: pressure bar, temperature K, and fuel mass flow rate g/s. Diagnostics included pressure measurements, filtered fast camera imaging, schlieren visualization, and spectroscopic observations. The global instability develops with a characteristic time of about 10 ms and is related to the interaction of the combustion-based separation zone with the reflected shock wave (SW) and electric discharge. It is shown that this instability could be effectively controlled by electrical discharge power. The thermoacoustic instability is developed with a characteristic time less than 1 ms. The analysis of pressure data reveals a resonant acoustic wave presence in the combustion zone between the fuel injection ports and the test section diffuser.
About the authors
S. Elliott
Institute for Flow Physics and Control, University of Notre Dame
Author for correspondence.
Email: torus@torus-press.ru
PhD in aerospace engineering, research engineer
United States, Notre Dame, IN 46556Sergey B. Leonov
Institute for Flow Physics and Control, University of Notre Dame
Email: Leonov.1@nd.edu
Doctor of Science in physics and mathematics, research professor
United States, Notre Dame, IN 46556References
- Ben-Yakar, A., and R. K. Hanson. 2001. Cavity flameholders for ignition and flame stabilization in scramjets: An overview. J. Propul. Power 17:869–878.
- Rasmussen, C. C., J. F. Driscoll, K.-Y. Hsu, J. M. Donbar, M. R. Gruber, and C. D. Carter. 2005. Stability limits of cavity-stabilized flames in supersonic flow. P. Combust. Inst. 30:2825–2833.
- Wang, Z., H. Wang, and M. Sun. 2014. Review of cavity-stabilized combustion for scramjet applications. P. I. Mech. Eng. G — J. Aer. 228(14):2718–2735.
- Billingsley, M., W. O’Brien, and J. Schetz. 2006. Plasma torch atomizer-igniter for supersonic combustion of liquid hydrocarbon fuel. AIAA Paper No. 2006-7970.
- Jacobsen, L., C. Carter, R. A. Baurle, T. A. Jackson, S. Williams, D. Bivolaru, S. Kuo, J. Barnett, and C.-J. Tam. 2008. Plasma-assisted ignition in scramjets. J. Propul. Power 24(4):641–654.
- Takita, K., K. Shishido, and K. Kurumada. 2011. Ignition in a supersonic flow by a plasma jet of mixed feedstock including CH4. P. Combust. Inst. 33(2):2383–2389.
- Li, F., X.-L. Yua, Y.-G. Tong, Y. Shen, J. Chen, L.-H. Chen, and X.-Y. Chang. 2013. Plasma-assisted ignition for a kerosene fueled scramjet at Mach 1.8. Aerosp. Sci. Technol. 28(1):72–78.
- Leonov, S. 2018. Electrically driven supersonic combustion. Energies 11(7):1733.
- Leonov, S. B., S. Elliott, C. Carter, A. Houpt, P. Lax, and T. Ombrello. 2021. Modes of plasma-stabilized combustion in cavity-based M = 2 configuration. Exp. Therm. Fluid Sci. 124:110355.
- Starikovskaya, S. M. 2006. Plasma assisted ignition and combustion. J. Phys. D Appl. Phys. 39(16):R265.
- Starikovskiy, A., and N. Aleksandrov. 2013. Plasma-assisted ignition and combustion. Prog. Energ. Combust. 39(1):61–110.
- Ju, Y., and W. Sun. 2015. Plasma assisted combustion: Dynamics and chemistry. Prog. Energ. Combust. 48:21–83.
- Macheret, S. O., M. N. Shneider, and R. B. Miles. 2005. Energy efficiency of plasma-assisted combustion in ram/scramjet engines. Paper AIAA No. 2005-5371.
- Esakov, I. I., L. P. Grachev, K. V. Khodataev, V. A. Vinogradov, and D. M. V. Wie. 2006. Propane–air mixture combustion assisted by MW discharge in a speedy airflow. IEEE T. Plasma Sci. 34(6):2497–2506.
- O’Briant, S. A., S. B. Gupta, and S. S. Vasu. 2016. Review: Laser ignition for aerospace propulsion. Propulsion Power Research 5(1):1–21.
- Leonov, S., A. Houpt, S. Elliott, and B. Hedlund. 2018. Ethylene ignition and flameholding by electrical discharge in supersonic combustor. J. Propul. Power 34(2):499–509.
- Elliott, S., P. Lax, and S. B. Leonov. 2022. Acetone PLIF visualization of mixing processes in a plasma stabilized supersonic combustor. AIAA Paper No. 2022-2256. doi: 10.2514/6.2022-2256.
- Choia, J.-Y., F. Ma, and V. Yang. 2005. Combustion oscillations in a scramjet engine combustor with transverse fuel injection. P. Combust. Inst. 30:2851–2858.
- Lin, K.-C., K. Jackson, R. Behdadnia, T. A. Jackson, F. Ma, and V. Yang. 2010. Acoustic characterization of an ethylene-fueled scramjet combustor with a cavity flameholder. J. Propul. Power 26(6):1161–1170.
- Wang, H., Z. Wang, and M. Sun. 2013. Experimental study of oscillations in a scramjet combustor with cavity flameholders. Exp. Therm. Fluid Sci. 45:259–263.
- Houpt, A., B. Hedlund, S. Leonov, T. Ombrello, and C. Carter. 2017. Quasi-DC electrical discharge characterization in a supersonic flow. Exp. Fluids 58(4):25.
- Savelkin, K. V., D. A. Yarantsev, I. V. Adamovich, and S. B. Leonov. 2015. Ignition and flameholding in a supersonic combustor by an electrical discharge combined with a fuel injector. Combust. Flame 162(3):825–835.
- Leonov, S. B., B. E. Hedlund, and A. W. Houpt. 2018. Morphology of a Q-DC discharge within a fuel injection jet in a supersonic cross-flow. Paper AIAA No. 2018-1060.
- Leonov, S. B., Y. I. Isaenkov, D. A. Yarantsev, I. V. Kochetov, A. P. Napartovich, and M. N. Shneider. 2009. Unstable pulse discharge in mixing layer of gaseous reactants. AIAA Paper No. 2009-0820.
Supplementary files
