Mechanisms of compression wave generation and amplification in freely propagating flames
- Authors: Kiverin A.D.1, Yakovenko I.S.1
-
Affiliations:
- Joint Institute for High Temperatures of the Russian Academy of Sciences
- Issue: Vol 14, No 1 (2021)
- Pages: 22-28
- Section: Articles
- URL: https://ogarev-online.ru/2305-9117/article/view/286492
- DOI: https://doi.org/10.30826/CE21140103
- ID: 286492
Cite item
Abstract
The paper is devoted to the numerical and theoretical analysis of the mechanisms of generation and amplification of shock waves in the process of unconfined flame propagation. Two basic mechanisms of shock wave generation corresponding to the linear and nonlinear stages of hydrodynamic instability development are distinguished. The role of thermoacoustic instability in shock wave amplification and the establishment of the conditions for deflagration-to-detonation transition is demonstrated on the example of a highly chemically active mixture.
About the authors
Alexey D. Kiverin
Joint Institute for High Temperatures of the Russian Academy of Sciences
Author for correspondence.
Email: alexeykiverin@gmail.com
Candidate of Science in Physics and Mathematics, Head of the Laboratory
Russian Federation, 13-2, Izhorskaya St., Moscow, 125412Ivan S. Yakovenko
Joint Institute for High Temperatures of the Russian Academy of Sciences
Email: yakovenko.ivan@bk.ru
кандидат физико-математических наук, старший научный сотрудник
Russian Federation, 13-2, Izhorskaya St., Moscow, 125412References
- Ng, H. D., and J. Lee. 2008. Comments on explosion problems for hydrogen safety. J. Loss Prevent. Proc. 21(2):136–146. doi: 10.1016/j.jlp.2007.06.001.
- Mitigation of hydrogen hazards in severe accidents in nuclear power plants. 2011. Vienna: IAEA. IAEA- TECDOC-1661. Available at: https://www-pub.iaea. org/MTCD/Publications/PDF/TE^н1661^нWeb.pdf (accessed December 27, 2020)
- Verhelst, S., and T. Wallner. Hydrogen-fueled internal combustion engines. 2009. Prog. Energ. Combust. 35(6):490–527. doi: 10.1016/j.pecs.2009.08.001.
- Efremov, V. P., M. F. Ivanov, A. D. Kiverin, and A. V. Utkin. 2016. Shock-wave dynamics during oil-filled transformer explosions. Shock Waves 27(3):517–522. doi: 10.1007/s00193-016-0688-2.
- Landau, L. D., and E. M. Lifshitz. 1987. Fluid mechanics: Vol. 6 (Course of theoretical physics). 2nd ed. Oxford: Butterworth-Heinemann, 1987. 552 p.
- Gostintsev, Yu. A., A. G. Istratov, and Yu. V. Shulenin. 1988. Self-similar propagation of a free turbulent flame in mixed gas mixtures. Combust. Explo. Shock Waves 24(5):563–569.
- Zel’dovich, Ya. B., and A. I. Rozlovsky. 1947. Ob usloviyakh vozniknoveniya neustoychivosti normal’nogo goreniya [On the conditions for the formation of instability of normal combustion]. Dokl. Akad. Nauk SSSR 57(4):365–368.
- Kiverin, A. D., I. S. Yakovenko, and V. E. Fortov. 2019. Mechanism of detonation formation upon free flame propagation in an unconfined space. Dokl. Phys. 64:449– 452. doi: 10.1134/S102833581912005X.
- Kiverin, A. D., and I. S. Yakovenko. 2020. Perekhod k detonatsii v svobodno rasprostranyayushchikhsya plamenakh [Transition to detonation in freely propagating flames]. Goren. Vzryv (Mosk.) — Combustion and Explosion 13(1):47–54.
- Bykov, V., A. Kiverin, A. Koksharov, and I. Yakovenko. 2019. Analysis of transient combustion with the use of contemporary CFD techniques. Comput. Fluids 194:104310. doi: 10.1016/j.compfluid.2019.104310.
- Keromnes, A., W. K. Metcalfe, K. A. Heufer, N. Donohoe, A. K. Das, C.-J. Sung, J. Herzler, C. Naumann, P. Griebel, O. Mathieu, M. C. Krejci, E. L. Petersen, W. J. Pitz, and H. J. Curran. 2013. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust. Flame 160(6): 995–1011. doi: 10.1016/j.combustflame.2013.01.001.
- Kulikovskii, A. G., and N. T. Pashchenko. 2013. Stability of a flame front in a divergent flow. P. Steklov Inst. Math. 281:49–61. doi: 10.1134/S0081543813040068.
- Altantzis, C., C. Frouzakis, A. Tomboulides, M. Matalon, and K. Boulouchos. 2012. Hydrodynamic and thermodif- fusive instability effects on the evolution of laminar planar lean premixed hydrogen flames. J. Fluid Mech. 700:329– 361. doi: 10.1017/jfm.2012.136.
- Ivanov, M. F., and A. D. Kiverin. 2015. Generation of high pressures during the shock wave – flame interaction. High Temp. 53(5): 668–676. doi: 10.1134/S0018151X15030086.
- Efremov, V. P., M. F. Ivanov, A. D. Kiverin, and I. S. Yakovenko. 2015. Mechanisms of direct detonation initiation via thermal explosion of radiatively heated gas– particles layer. Results Phys. 5:290–296. doi: 10.1016/j. rinp.2015.10.003.
- Roy, G. D., S. M. Frolov, A. A. Borisov, and D. W. Netzer. 2004. Pulse detonation propulsion: Challenges, current status, and future perspective. Prog. Energ. Combust. 30(6):545–672. doi: 10.1016/j.pecs.2004.05.001.
Supplementary files
